

HB110 72X31 drone arm set Heavy load brushless motor

Basic Information

Guangdong, China . Place of Origin:

• Brand Name: GS

HB110 72X31 Model Number: • Price: Negotiable • Delivery Time: 6-8 • Payment Terms: T/T • Supply Ability: 100

Product Specification

M9OC60 EEE V1.0 Motor Model: · Motor Size: D:257x123 Mm • Internal Resistance: $40.5 \, \text{M}\Omega$

1.44A/ 40V No Load Current: Motor Weight: 12.7 Kg Recommended Continue 110 Kg

Thrust:

354V-400V Nominal Voltage: Maximum Current: 139.5 A • Maximum Power: 55609W Maximum Thrust: 201 Kg

. Highlight: HB110 72X31 drone arm set,

Heavy load drone arm set

More Images

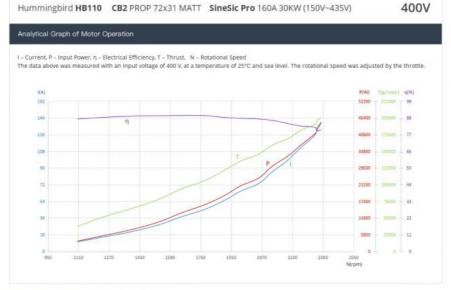
HB110 72X31 drone arm set Heavy load brushless motor

HB(hummingbird)drone arm set (motor, ESC, propeller) is not sold separately as it is an integrated combo with the FOC ESC included. Each rotor provides a continuous thrust of 110kg(242.5bL) and has a maximum power output of and has a maximum power output of 55 KW, equivalent to 74 hp. The combo is specifically designed for large multi-rotor/e-VTOL drones capable of carrying heavy loads, flying car, delivery drone, urban mobility.

ESC Model	SineSic Pro 160A 30KW(150V~435V)	Weight	1895g
Size(L*W*H)	212.5*120.0*68.0 mm	Continuous Current	160A (under good cooling)
Protection Level	IP67	Instant Current	320A (under good cooling)
Recommended Battery	96~100S LiPO	PWM Input signal Voltage	3.3V/5V
Cable Length(input)	675 mm (10AWG Silicone Flexible Wire)	Cable Length(signal)	1245 mm (9-Core Pvc Flexible Wire)
Cable Length(output)	600 mm(10AWG silicone Flexible Wire)	Cable Length(LED wire)	155 mm (4-Core Pvc Flexible Wirewith Waterproof Connector)

The drone arm set with great weight to power ratio is specially designedfor high-capacity multi-rotor,e-VTOL application,very suitable for heavypayload lifting drones.

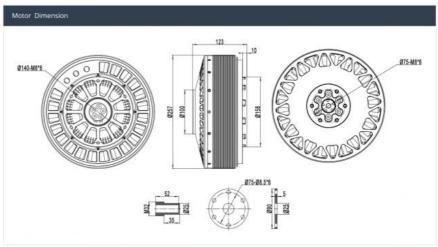
The recommended operating voltage range 100-600V.

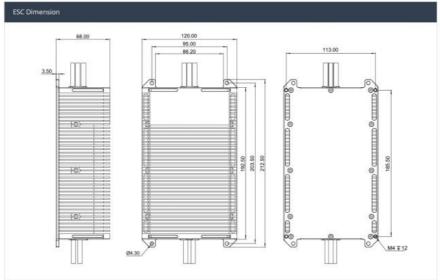

This propulsion system unit with motor, ESC, propeller and its compatibility to serve well inlarge-scale aircraft with optimal power

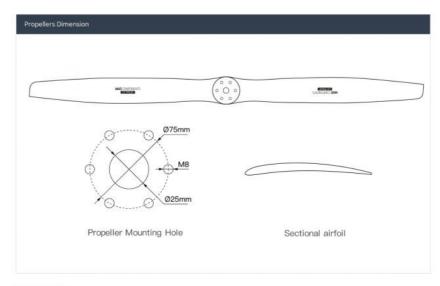
Utilizing high-guality aviation-grade aluminum enhances both safety measures and utilization of durability Stable rotation and anti-fall properties quaranteed by Japanese bearing.

Moreover, the incorporation of hioh-performance curved maanets and resistant to elevated temperatures which resulting in a remarkable performance increase by 5%

400V




BASIC PARAMATER


Motor Data					
Motor Model	MAD M90C60 EEE V1.0	Nominal Voltage	354V-400V		
RPM/V	9 KV	Cable Length	250 mm (extended Enameled wires		
Motor Size	D:257 × 123 mm	Maximum Current	139.5 A		
Internal resistance	40.5 mΩ	Maximum Power	55609W		
No Load Current	1.44A / 40V	Maximum thrust	201 kg		
Motor Weight	12.7 kg	Shaft Diameter	IN: 35 mm		
Recommended Continue thrust	110 kg	Stator	TAIWAN / Anticorrosive		

ESC Data			
ESC Model	SineSic Pro 160A 30KW (150V~435V)	Weight	1895g
Size(L*W*H)	212.5*120.0*68.0 mm	Continuous Current	160A (under good cooling)
Protection Level	IP67	Instant Current	320A (under good cooling)
Recommended Battery	96~ 100S LIPO	PWM Input Signal Voltage	3.3V/5V
Cable Length(Input)	685mm	Cable Length(Signal)	1175mm
Cable Length(output)	A;255mm / B:285mm / C:325mm	Cable Length(LED wire)	145 mm
Cable Length(output) Propellers Data	A:255mm / B:285mm / C:325mm	Cable Length(LED wire)	145 mm
Propellers Model	CB2 72X31 MATT (1828.8 x 787.4mm)	Single Weight	1080 g

PRODUCT DRAWING

TEST DATA

iui iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ngbird HB11	O CB2 PF	ROP 72x31	MATT Sines	Sic Pro 16	DA 30KW (1	50V~435V)		354V
hrottle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficien [gf/W]
30	353.69	11.94	4223.1	3722.8	32.318	1100	38132	88.2	9.0
35	353.63	17.22	6089.5	5440.9	41.400	1255	50974	89.3	8.4
40	353.61	24.73	8744.8	7802.1	53.370	1396	65229	89.2	7.5
45	353.65	32.35	11440.6	10256.7	64.268	1524	77400	89.7	6.8
50	353.61	40.63	14367.2	12926.4	74.675	1653	88799	90	6.2
55	353.53	49.85	17623.5	15791.1	85.339	1767	104749	89.6	5.9
60	353.54	60.93	21541.2	19180.5	97.842	1872	118748	89	5.5
65	353.51	72.74	25714.3	22698.6	110.140	1968	134255	88.3	5.2
70	353.39	83.41	29476.3	25959.0	120.335	2060	144578	88.1	4.9
75	353.41	97.79	34560.0	29911.6	133.474	2140	158014	86.5	4.6
80	353.4	111.75	39492.4	33693.7	144.933	2220	170431	85.3	4.3
85	353.26	131.27	46372.4	38383.2	160.760	2280	183080	82.8	3.9
90	353.23	146.61	51787.1	42240.5	172.379	2340	194407	81.6	3.8
95	353.22	151.81	53622.3	43387.9	174.673	2372	194858	80.9	3.6
100	353.23	150.8	53267.1	42694.9	470.707	2360	400705	00.0	100
	gbird HB11			MATT Sines	172.757 Sic Pro 160		192735 50V~435V)	80.2	400V
ummin	ngbird HB11 Voltage (V)		ROP 72x31					Efficiency [%]	400V
ummin	Voltage	O CB2 PF	ROP 72x31	MATT Sines	Sic Pro 160	0A 30KW (1	50V~435V)	Efficiency	400V
ummin hrottle [%]	Voltage [V]	O CB2 PF	ROP 72x31 Input Power [W]	MATT Sines Output Power [W]	Sic Pro 160 Torque [N×m]	0A 30KW (1	50V~435V) Thrust [gf]	Efficiency [%]	400V
ummin hrottle [%]	Voltage [V] 399.37	Current [A]	ROP 72x31 Input Power [W] 4105.5	MATT Sines Output Power [W] 3584.5	Sic Pro 160 Torque [N×m] 30.949	0A 30KW (1 RPM 1106	50V~435V) Thrust [8f] 37713	Efficiency [%]	400V Efficien Isf/W
hrottle [%] 30 35	Voltage [V] 399,37 399,39	O CB2 PF Current [A] 10.28 15.8	Input Power [W] 4105.5 6310.4	Output Power [W] 3584.5 5576.2	Torque (N×m) 30,949 42,633	DA 30KW (1 RPM 1106 1249	50V~435V) Thrust [8f) 37713 52294	Efficiency [%] 87,3 88,4	400V Efficien (gf/W) 9.2 8.3
ummin hrottle [%] 30 35 40	Voltage (V) 399.37 399.39 399.41	Current (A) 10.28 15.8 21.56	ROP 72x31 Input Power [W] 4105.5 6310.4 8611.3	Output Power [W] 3584.5 5576.2 7678.8	Torque (N×m) 30,949 42,633 52,564	DA 30KW (1 RPM 1106 1249 1395	50V~435V) Thrust [8f] 37713 52294 64712	Efficiency [%] 87.3 88.4 89.2	400V Efficien [gf/W] 9.2 8.3 7.5
10 mmin hrottle [%] 30 35 40 45	Voltage (V) 399.37 399.39 399.41 399.31	Current (A) 10.28 15.8 21.56 28.46	ROP 72x31 Input Power [W] 4105.5 6310.4 8611.3 11364.4	Output Power [W] 3584.5 5576.2 7678.8 10159.0	Torque (N×m) 30,949 42.633 52.564 63.489	DA 30KW (1 RPM 1106 1249 1395 1528	50V~435V) Thrust [sf] 37713 52294 64712 77799	Efficiency (%) 87.3 88.4 89.2 89.4	400V Efficien (gf/W) 9,2 8,3 7,5 6,8
hrottle [%] 30 35 40 45	Voltage [V] 399.37 399.39 399.41 399.31	Current (A) 10.28 15.8 21.56 28.46 37.5	Input Power [W] 4105.5 6310.4 8611.3 11364.4 14974.1	Output Power [W] 3584.5 5576.2 7678.8 10159.0 13419.4	Torque [N×m] 30,949 42,633 52,564 63,889 77,570	DA 30KW (1 RPM 1106 1249 1395 1528 1652	50V~435V) Thrust [8f] 37713 52294 64712 77799 94009	Efficiency (%) 87.3 88.4 89.2 89.4	400V Efficien Isf/WJ 9.2 8.3 7.5 6.8 6.3
10 mmin 10	Voltage (V) 399.37 399.39 399.41 399.31 399.31	Current (A): 10.28 15.8 21.56 28.46 37.5 45.22	Input Power (W) 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3	Output Power (W) 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6	Torque (N×m) 30,949 42,633 52,564 63,489 77,570 87,329	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769	50V~435V) Thrust [8f] 37713 52294 64712 77799 94009 105734	Efficiency (%) 87.3 88.4 89.2 89.4 89.6	400V Efficient [8fW] 9.2 8.3 7.5 6.8 6.3 5.9
hrottle (%) 30 35 40 45 50 55	Voltage (V) 399.37 399.39 399.41 399.31 399.31 399.32	Current (A) 10.28 15.8 21.56 28.46 37.5 45.22 54.85	Input Power [W] 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3 21901.1	Output Power [W] 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6 19348.8	Torque (N×m) 30,949 42,633 52,564 63,489 77,570 87,329 98,648	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769 1873	50V~435V) Thrust [87] 37713 52294 64712 77799 94009 105734 121243	Efficiency (%) 87.3 88.4 89.2 89.4 89.6 89.6 88.3	400\vert Efficien [sfrw] 9.2 8.3 7.5 6.8 6.3 5.9 5.5
ummin hrottle [%] 30 35 40 45 50 55 60 65	Voltage (V) 399.37 399.39 399.41 399.31 399.31 399.32 399.29	Current [A] 10.28 15.8 21.56 28.46 37.5 45.22 54.85 64.82	Input Power (W) 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3 21901.1 25875.5	Output Power [W] 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6 19348.8 22714.3	Torque [N·m] 30.949 42.633 52.564 63.489 77.570 87.329 98.648 110.836	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769 1873 1957	50V~435V) Thrust [8f] 37713 52294 64712 77799 94009 105734 121243 135071	87.3 88.4 89.2 89.4 89.6 89.6 88.3 87.8	400V Efficient (sf/W) 9.2 8.3 7.5 6.8 6.3 5.9 5.5 5.2
ummin hrottle [%] 30 35 40 45 50 55 60 65 70	Voltage (V) 399.37 399.39 399.41 399.31 399.31 399.32 399.29 399.19	Current [A] 10.28 15.8 21.56 28.46 37.5 45.22 54.85 64.82 72.99	ROP 72x31 Input Power [W] 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3 21901.1 25875.5 29140.5	Output Power [W]. 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6 19348.8 22714.3 25427.1	Torque [Nem] 30,949 42,633 52,564 63,489 77,570 98,648 110,836 118,329	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769 1873 1957 2052	50V~435V) Thrust [8] 37713 52294 64712 77799 94009 105734 121243 135071 145502	87.3 88.4 89.2 89.4 89.6 89.6 88.3 87.8	400V Efficient IsfAVI 9.2 8.3 7.5 6.8 6.3 5.9 5.5 5.2 5.0
ummin hrottle [%] 30 35 40 45 50 55 60 65 70 75	Voltage [V] 399.37 399.39 399.41 399.31 399.32 399.29 399.19 399.24 399.16	Current (A) 10.28 15.8 21.56 28.46 37.5 45.22 54.85 64.82 72.99 86.31	ROP 72x31 Input Power [W] 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3 21901.1 2587.5 29140.5 34451.5	Output Power (W) 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6 19348.8 22714.3 25427.1 29741.9	Torque [N*m] 30.949 42.633 52.564 63.489 77.570 87.329 98.648 118.329 133.528	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769 1873 1957 2052 2127	50V~435V) Thrust (80) 37713 52294 64712 77799 94009 105734 121243 135071 145502 159487	Efficiency [%] 87.3 88.4 89.2 89.4 89.6 89.6 88.3 87.8 87.3	400V Efficient [sf/M] 9.2 8.3 7.5 6.8 6.3 5.9 5.5 5.2 5.0 4.6
ummin hrottle [%] 30 35 40 45 50 55 60 65 70 75 80	Voltage [V]: 399.37 399.39 399.41 399.31 399.32 399.29 399.29 399.19 399.24	Current (A) 10.28 15.8 21.56 28.46 37.5 45.22 54.85 64.82 72.99 86.31 98.38	ROP 72x31 Input Power [W] 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3 21901.1 25875.5 394651.5 39267.4	Output Power (W) 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6 19348.8 22714.3 25427.1 29741.9 33115.5	Torque [N+m] 30,949 42,633 52,564 63,489 77,570 87,329 98,648 110,832 118,329 133,528 143,350	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769 1873 1957 2052 2127 2206	50V~435V) Thrust (sf) 37713 52294 64712 77799 94009 105734 121243 135071 145502 159487 168537	Efficiency (%) 87.3 88.4 89.2 89.4 89.6 88.3 87.8 87.3 86.3 84.3	400V Efficient [s//V] 9.2 8.3 7.5 6.8 6.3 5.9 5.5 5.2 5.0 4.6 4.3
hrottle (%) 30 35 40 45 50 65 70 75 80 85	Voltage (V) 399.37 399.39 399.31 399.31 399.32 399.29 399.19 399.24 399.14 399.06	Current (A) 10.28 15.8 21.56 28.46 37.5 45.22 54.85 64.82 72.99 86.31 98.38 111.66	ROP 72x31 Input Power (W) 4105.5 6310.4 8611.3 11364.4 14974.1 18057.3 21901.1 25875.5 29140.5 39267.4 44559.0	Output Power (W) 3584.5 5576.2 7678.8 10159.0 13419.4 16177.6 19348.8 22714.3 25427.1 29741.9 33115.5 36852.4	Torque [N+m] 30,949 42,633 52,564 63,489 77,570 87,329 98,648 110,836 118,329 118,329 118,329 118,329	DA 30KW (1 RPM 1106 1249 1395 1528 1652 1769 1873 1957 2052 2127 2206 2272	50V~435V) Thrust (sf) 37713 52294 64712 77779 94009 105734 121243 135071 145502 159467 168537 181329	Efficiency (%) 87.3 88.4 89.2 89.4 89.6 89.6 88.3 87.8 86.3 84.3 82.7	### 400\\ Efficien Ist/W 9.2 8.3 7.5 6.8 6.3 5.9 5.5 5.2 5.0 4.6 4.3 4.1

Our Services

1. We provide 1 Year Warranty. Buy with confidence.

- 2. If you are not satisfied when you receive your item, please return it within 14 days for a replacement or money back. Please contact me before you return it.
- 3. If item is defective in 3 months, We will send you a replacement without extra charger, or offer refund after we receive the defective item.
- 4. If item is defective after 3 months, you can still send it back to us. We will send you a new one after receiving the defective item. But you have to pay the extra shipping fee.

FAQ

Q1: Do you support OEM/ODM?

A1: Yes. We can print your logo on the product.

Q2: About samples.

A2: Under normal circumstances, samples will be ready within 7 days, and 10-20 days for OEM/ODM orders. Sample fee and shipping will be charged.

Q3: What is the delivery time?

A3: For regular orders, we can ship within 15 days, for OEM/ODM, we can ship within 25-45 days (depending on the quantity). In the event of delays, we will notify you in advance of the status and resolution.

Q4: What is the minimum order quantity?

A4: There is no MOQ for wholesale (1 piece accepted), including OEM/ODM.

Q5: What are your payment terms?

A5: L/C.TT100%.

Q6: Can you reduce the shipping cost?

A6: When calculating the shipping cost for you, we always choose the cheapest and safest express. Although we have partnerships with shipping companies, we can't keep costs down because it's not us who get paid. If you think it's expensive for you. You can always make your own choice.

Q7: Return policy.

A7: If you want to replace the received item, you must contact us within 7 days after receiving the item. Returned items should be in their original condition and you should pay for additional shipping.

Guangzhou Gesai Intelligent Electronic Technology Co., Ltd.

Kellyyangjing2021@outlook.com

uav-vtoldrone.com

Fuli Yingtong Building, the Pearl River New Town, Tianhe District, Guangzhou, Guangdong, China