Guangdong, China

HB30 47.5X18

Negotiable

6-8

T/T

100

Basic Information

- Place of Origin:
- Brand Name: GS
- Model Number:
- Price:
- Delivery Time:
- Payment Terms:
- Supply Ability:

Product Specification

Motor Model:	M40C30 IPE V3.0
 Motor Size: 	D:151.4 X81 Mm
 Internal Resistance: 	387 MΩ
No Load Current:	1.8A/ 50V
 Motor Weight: 	3460 G
Recommended Continue Thrust:	30 Kg
 Nominal Voltage: 	354V-400V
 Maximum Current: 	49 A
 Maximum Power: 	17467W
 Maximum Thrust: 	74 Kg
• Highlight:	Brushless Motor HB30 47.5X18, HB30 47.5X18 drone arm set

More Images

Brushless Motor HB30 47.5X18 drone arm set

The drone arm set (motor, ESC, propeller) is not sold separately as it is an integrated combo with the FOC ESC included. Each rotor provides a continuous thrust of 30kg(66.1BL) and has a maximum power output of 17KW, equivalent to 23 horsepower.It is for large multi-rotor/e-VTOL drones capable of carrying heavy loads,flying car,delivery drone,urban mobility.

ESC Model	SineSic Pro 80A 16KW(150V-435V)	Weight	1400g
Size(L*W*H)	197.0*88.0*59.5 mm	Continuous Current	80A (under good cooling)
Protection Level	IP67	Instant Current	150A (under good cooling)
Recommended Battery	96~100S LiPO	PWM Input signal Voltage	3.3V/5V
Cable Length(input)	685mm	Cable Length(signal)	1175mm
Cable Length(output)	A:265mm/B:295mm/C:315m m	Cable Length(LED wire)	145 mm

The drone arm set with great weight to power ratio is speciallydesigned for high-capacity multi-rotor,e-VTOL application,verysuitable for heavy payload lifting drones.

The recommended operating voltage range 100-600V

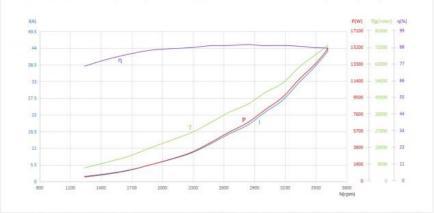
This propulsion system unit with motor, ESC, propeller and its compatibility to serve well in

large-scale aircraft with optimal power

Utilizing high-quality aviation-grade aluminum enhances both safety measures and utilization of durability.

Stable rotation and anti-fall properties guaranteed by Japanese bearing.

Moreover, the incorporation of high-performance curved magnets and resistant to elevated temperatures which resulting in a remarkable performance increase by 5%

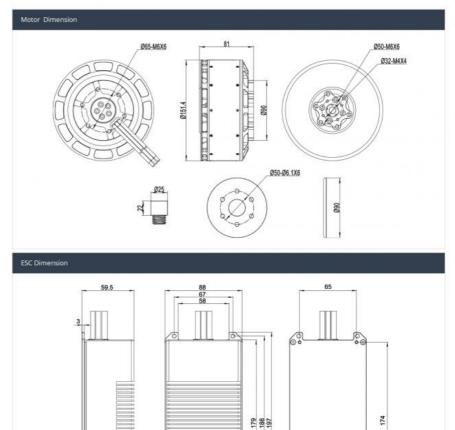


Hummingbird HB30 CB2 PROP 47.5x18 MATT SineSic Pro 80A 16KW (150V~435V)

400V

Analytical Graph of Motor Operatio

I – Current, P – Input Power, ŋ – Electrical Efficiency, T – Thrust, N – Rotational Speed The data above was measured with an input voltage of 400 V, at a temperature of 25°C and sea level. The rotational speed was adjusted by the throttle.



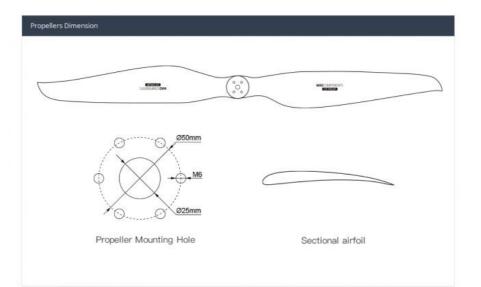
BASIC PARAMATER

Motor Data					
Motor Model	MAD M40C30 IPE V3.0	Nominal Voltage	354V-400V		
RPM/V	10 KV	Cable Length	150 mm (extended Enameled wires		
Motor Size	D:151.4 × 81 mm	Maximum Current	49 A		
Internal resistance	387 mΩ	Maximum Power	17467W		
No Load Current	1.8A / 50V	Maximum thrust	74 kg		
Motor Weight	3460 g	Shaft Diameter	IN: 25 mm		
Recommended Continue thrust	30 kg	Stator	TAIWAN / Anticorrosive		

ESC Data			
ESC Model	SineSic Pro 80A 16KW (150V~435V)	Weight	1400g
Size(L*W*H)	197.0*88.0*59.5 mm	Continuous Current	80A (under good cooling)
Protection Level	IP67	Instant Current	150A (under good cooling)
Recommended Battery	96~ 100S LIPo	PWM Input Signal Voltage	3.3V/5V
Cable Length(input)	685mm	Cable Length(Signal)	1175mm
Cable Length(output)	A:265mm / B:295mm / C:315mm	Cable Length(LED wire)	145 mm
Propellers Data			
Propellers Model	CB2 47.5X18 MATT (1206.5 x 457.2mm)	Single Weight	463 g
Material	High quality carbon fiber + Resin	Type	fixed

PRODUCT DRAWING

₩3<u>₹14</u>


°°

1,

P

Ø4.3

10/

TEST DATA

	0011011000	CB2 PRO	JP 47.5X18	MATT Sine	SIC Pro 80	A 16KW (1	50V~435V)		354V
Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficienc [gf/W]
30	353.7	1.92	679.1	505.6	3.919	1232	7372	74.5	10.9
35	353.7	2.94	1039.9	843.4	5.539	1454	10387	81.1	10.0
40	353.7	4.33	1531.5	1302.3	7.389	1683	13984	85	9.1
45	353.69	5.95	2104.5	1800.3	9.233	1862	17624	85.5	8.4
50	353.73	8.22	2907.7	2567.3	11.747	2087	22269	88.3	7.7
55	353.69	10.65	3766.8	3345.1	14.047	2274	26625	88.8	7.1
60	353.69	13.88	4909.2	4370.5	17.021	2452	32227	89	6.6
65	353.69	17.33	6129.4	5554.1	19.909	2664	37504	90.6	6.1
70	353.69	21.27	7523.0	6790.3	22.937	2827	42634	90.3	5.7
75	353.67	25.62	9061.0	8192.5	25.965	3013	48526	90.4	5.4
80	353.61	31.05	10979.6	9819.1	29.551	3173	55502	89.4	5,1
85	353.59	37.29	13185.4	11768.2	33.727	3332	62531	89.3	4.7
90	353.6	44.27	15653.9	13767.9	37.564	3500	69216	88	4,4
95	353.56	49.09	17356.3	15152.9	40.094	3609	73872	87.3	4.3
100	252.55	48.95	17202.0			2400			
100 Hummin	353.56 gbird HB30		17306.8 DP 47.5x18	15017.4 B MATT Sine	39.835	3600 A 16KW (1	73978 50V~435V)	86.8	4.3 400V
lummin	gbird HB30 Voltage	CB2 PRO	DP 47.5x18 Input Power	MATT Sine	Sic Pro 80		50V~435V) Thrust	Efficiency	400V
lummin Throttle (%)	ogbird HB30 voltage (V)	CB2 PRC	DP 47.5x18 Input Power (W)	MATT Sine Output Power [W]	Sic Pro 80 Torque [N×m]	А 16KW (1) _{КРМ}	50V~435V) Thrust [8 ¹]	Efficiency (%)	400V
Hummin Throttle (%) 30	voltage (VJ 399,42	CB2 PRC Current [A]	DP 47.5x18 Input Power [W] 675.0	MATT Sine Output Power (W) 513.9	Sic Pro 80 Torque [N×m] 3.961	А 16KW (1 крм 1239	50V~435V) Thrust (gf) 7372	Efficiency (%) 76.1	400V Efficienc [gf/W] 10,9
Hummin Throttle (%) 30 35	voltage [V] 399,42 399,42	CB2 PRC Current [A] 1.69 2.6	DP 47.5x18 Input Power [W] 675.0 1038.5	MATT Sine Output Power [W] 513.9 837.1	Sic Pro 80 Torque (N×m) 3.961 5.475	A 16KW (1! RPM 1239 1460	50V~435V) Thrust [81] 7372 10434	Efficiency (%) 76.1 80.6	400V Efficienc [gf/W] 10.9 10.0
Hummin Throttle (%) 30 35 40	yoltage (V) 399,42 399,43	Current [A] 1.69 2.6 3.74	DP 47.5x18 Input Power (W) 675.0 1038.5 1493.9	Output Power [W] 513.9 837.1 1253.7	Sic Pro 80 Torque (№m) 3.961 5.475 7.186	A 16KW (1 RPM 1239 1460 1666	50V~435V) Thrust (gf) 7372 10434 13521	Efficiency (%) 76,1 80.6 83.9	400V
Hummin Throttle (%) 30 35 40 45	gbird HB30 Voltage [V] 399.42 399.42 399.43 399.44	Current [A] 1.69 2.6 3.74 5.42	DP 47.5x18 Input Power [W] 675.0 1038.5 1493.9 2165.0	Output Power [W] 513.9 837.1 1253.7 1873.5	Sic Pro 80 Torque (N##) 3.961 5.475 7.186 9.552	A 16KW (1 RPM 1239 1460 1666 1873	50V~435V) Thrust [80] 7372 10434 13521 17970	Efficiency (%) 76.1 80.6 83.9 86.5	400V Efficienc [gf/W] 10.9 10.0 9.1 8.3
Hummin (%) 30 35 40 45 50	gbird HB30 Voltage (V) 399.42 399.42 399.43 399.44 399.44	CB2 PRC Current [A] 1.69 2.6 3.74 5.42 7.26	DP 47.5x18 Input Power [W] 675.0 1038.5 1493.9 2165.0 2899.9	MATT Sine Output Power [W] 513.9 837.1 1253.7 1873.5 2541.1	Sic Pro 80 Torque (N×m) 3.961 5.475 7.186 9.552 11.666	A 16KW (1 RPM 1239 1460 1666 1873 2080	50V~435V) Thrust [80] 7372 10434 13521 17970 22140	Efficiency (%) 76.1 80.6 83.9 86.5 87.6	400V Efficienc [gf/W] 10.9 10.0 9.1 8.3 7.6
Hummin (%) 30 35 40 45 50 55	voltage [V] 399,42 399,42 399,43 399,44 399,44 399,44	CB2 PRC Current [A] 1.69 2.6 3.74 5.42 7.26 9.33	DP 47.5x18 Input Power (W) 675.0 1038.5 1493.9 2165.0 2899.9 3726.8	MATT Sine Output Power [W] 513.9 837.1 1253.7 1873.5 2541.1 3292.0	Sic Pro 80 Torque (N×m) 3.961 5.475 7.186 9.552 11.666 13.806	A 16KW (1 RPM 1239 1460 1666 1873 2080 2277	50V~435V) Thrust [g1] 7372 10434 13521 17970 22140 26256	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3	400V Efficience [gf/w] 10.9 10.0 9.1 8.3 7.6 7.0
Hummin Throttle [%] 30 35 40 45 50 55 60	voltage (V) 399,42 399,42 399,43 399,44 399,44 399,44 399,44	CB2 PRC Current [A] 1.69 2.6 3.74 5.42 7.26 9.33 12.22	DP 47.5x18 Input Power [W] 675.0 1038.5 1493.9 2165.0 2899.9 3726.8 4880.5	Output Power (V) 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4368.3	Sic Pro 80 Torque (N×m) 3.961 5.475 7.186 9.552 11.666 13.806 16.957	A 16KW (1 RPM 1239 1460 1666 1873 2080 2277 2460	50V~435V) Thrust [87] 7372 10434 13521 17970 22140 26256 31454	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3 89.5	400V Efficience [gf/w] 10.9 10.0 9.1 8.3 7.6 7.0 6.4
lummin (%) 30 35 40 45 50 55 60 65	Voltage V) 399.42 399.42 399.43 399.44 399.44 399.44 399.39 399.39	CB2 PRC Current [A] 1.69 2.6 3.74 5.42 7.26 9.33 12.22 15.46	DP 47.5x18 Power [W] 675.0 1038.5 1493.9 2165.0 2899.9 3726.8 4880.5 6174.6	MATT Sine Output Power (W) 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4368.3 5541.6	Sic Pro 80 Torque (N+m) 3.961 5.475 7.186 9.552 11.666 13.806 16.957 20.045	A 16KW (1 RPM 1239 1460 1666 1873 2080 2277 2460 2640	50V-435V) Thrust [8] 7372 10434 13521 17970 22140 26256 31454 37002	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3 89.5 89.7	400V Efficience [gfw] 10.9 10.0 9.1 8.3 7.6 7.0 6.4 6.0
lummin (%) 30 35 40 45 50 55 60 65 70	Voltage (V) 399,42 399,42 399,44 399,44 399,44 399,44 399,39 399,39 399,39	CB2 PRC Current [A] 1.69 2.6 3.74 5.42 7.26 9.33 12.22 15.46 18.67	DP 47.5x18 Input Power (W) 675.0 1038.5 1433.9 2165.0 2899.9 3726.8 4880.5 6174.6 7457.0	MATT Sine Output Power (W) 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4388.3 5541.6 6731.2	Sic Pro 80 Torque (N=m) 3.961 5.475 7.186 9.552 11.66 16.957 20.045 22.665	A 16KW (1) RPM 1239 1460 1666 1873 2080 2277 2460 2640 2836	50V-435V) Thrust [8] 7372 10434 13521 17970 22140 22566 31454 37002 41759	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 87.6 88.3 89.5 89.7 90.3	400V Efficience [gfw] 10.9 10.0 9.1 8.3 7.6 7.0 6.4 6.0 5.6
Hummin (%) 30 35 40 45 50 55 60 65 70 75	Voltage [V] 399.42 399.42 399.43 399.44 399.44 399.44 399.39 399.39 399.39	CB2 PRC Current [A] 1.69 2.6 3.74 5.42 7.26 9.33 12.22 15.46 18.67 22.75	DP 47.5x18 Input Power (W) 675.0 1038.5 1493.9 2165.0 2899.9 3726.8 4880.5 6174.6 7457.0 9085.2	MATT Sine Output Power [W] 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4386.3 5541.6 6731.2 8138.9	Sic Pro 80 Torque (N+m) 3.961 5.475 7.186 9.552 11.666 13.806 13.806 13.805 20.045 22.665 25.907	A 16KW (1) RPM 1239 1460 1666 1873 2080 2287 2460 2640 2836 3000	50V~435V) Thrust (81) 7372 10434 13521 17970 22140 26256 31454 37002 41759 47792	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3 89.5 89.7 90.3 89.6	400V Efficienc (g/w) 10.9 10.0 9.1 8.3 7.6 7.0 6.4 6.0 5.6 5.3
Hummin (%) 30 35 40 45 50 55 60 65 70 75 80	voltage [V] 399,42 399,42 399,44 399,44 399,44 399,44 399,44 399,39 399,39 399,39 399,31 399,35 399,32	CB2 PRC Current (A) 1.69 2.6 3.74 5.42 7.26 9.33 12.22 15.46 18.67 22.75 26.74	DP 47.5x18 Input Power (W) 675.0 1038.5 1493.9 2165.0 2899.9 3726.8 4880.5 6174.6 7457.0 9085.2 10677.8	MATT Sine Output Power [W] 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4368.3 5541.6 6731.2 8138.9 9583.2	Sic Pro 80 Torque (N×m) 3.961 5.475 7.186 9.552 11.666 16.357 20.045 22.665 25.907 28.841	A 16KW (1) RPM 1239 1460 1666 1873 2060 2277 2460 2640 2640 2640 2640 2640 3000 3173	50V-435V) Thrust [80 7372 10434 13521 17970 22140 26256 31454 37002 41759 47792 53048	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3 89.5 89.5 89.7 90.3 89.6 89.7	400V Efficience [gf/w] 10.9 10.0 9,1 8.3 7.6 7.0 6.4 6.0 5.6 5.3 5.0
Hummin (%) 30 35 40 45 50 55 60 55 65 70 75 80 85	voltage [V] 399,42 399,42 399,44 399,44 399,44 399,39 399,39 399,39 399,39 399,35 399,35 399,32 399,36	CB2 PRC Current (A) 1.69 2.6 3.74 5.42 7.26 9.33 12.22 15.46 18.67 22.75 26.74 32.8	DP 47.5x18 Input Power (W) 675.0 1038.5 1493.9 2165.0 2899.9 3726.8 4880.5 6174.6 6174.6 7457.0 9085.2 10677.8 13099.0	MATT Sine Output Power [W] 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4368.3 5541.6 6731.2 8138.9 9583.2 11688.1	Sic Pro 80 Torque (Nm) 3.961 5.475 7.186 9.552 11.666 13.806 16.957 20.045 22.665 22.665 22.697 28.841 33.417	A 16KW (1) RPM 1239 1460 1666 1873 2080 2277 2460 2640 2836 3000 3173 3340	50V-435V) Thrust [80] 7372 10434 13521 17970 22140 26256 31454 37052 41759 47792 53048 61876	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3 89.5 89.7 90.3 89.6 89.7 90.3 89.6	400V Efficienc [gf/w] 10.9 10.0 9.1 8.3 7.6 7.0 6.4 6.4 6.4 6.4 6.5 5.6 5.3 5.0 4.7
throttle (%) 30 35 40 45 50 55 60 65 70 75 80	voltage [V] 399,42 399,42 399,44 399,44 399,44 399,44 399,44 399,39 399,39 399,39 399,31 399,35 399,32	CB2 PRC Current (A) 1.69 2.6 3.74 5.42 7.26 9.33 12.22 15.46 18.67 22.75 26.74	DP 47.5x18 Input Power (W) 675.0 1038.5 1493.9 2165.0 2899.9 3726.8 4880.5 6174.6 7457.0 9085.2 10677.8	MATT Sine Output Power [W] 513.9 837.1 1253.7 1873.5 2541.1 3292.0 4368.3 5541.6 6731.2 8138.9 9583.2	Sic Pro 80 Torque (N×m) 3.961 5.475 7.186 9.552 11.666 16.357 20.045 22.665 25.907 28.841	A 16KW (1) RPM 1239 1460 1666 1873 2060 2277 2460 2640 2640 2640 2640 2640 3000 3173	50V-435V) Thrust [80 7372 10434 13521 17970 22140 26256 31454 37002 41759 47792 53048	Efficiency (%) 76.1 80.6 83.9 86.5 87.6 88.3 89.5 89.5 89.7 90.3 89.6 89.7	400V Efficience [gf/w] 10.9 10.0 9,1 8.3 7.6 7.0 6.4 6.0 5.6 5.3 5.0

Our Services

1. We provide 1 Year Warranty. Buy with confidence.

2. If you are not satisfied when you receive your item, please return it within 14 days for a replacement or money back. Please contact me before you return it.

3. If item is defective in 3 months, We will send you a replacement without extra charger, or offer refund after we receive the defective item.

4. If item is defective after 3 months, you can still send it back to us. We will send you a new one after receiving the defective item. But you have to pay the extra shipping fee.

FAQ

Q1: Do you support OEM/ODM? A1: Yes. We can print your logo on the product. Q2: About samples. A2: Under normal circumstances, samples will be ready within 7 days, and 10-20 days for OEM/ODM orders. Sample fee and shipping will be charged. Q3: What is the delivery time? A3: For regular orders, we can ship within 15 days, for OEM/ODM, we can ship within 25-45 days (depending on the quantity). In the event of delays, we will notify you in advance of the status and resolution. Q4: What is the minimum order quantity? A4: There is no MOQ for wholesale (1 piece accepted), including OEM/ODM. Q5: What are your payment terms? A5: L/C.TT100%. Q6: Can you reduce the shipping cost? A6: When calculating the shipping cost for you, we always choose the cheapest and safest express. Although we have partnerships with shipping companies, we can't keep costs down because it's not us who get paid. If you think it's expensive for you. You can always make your own choice. Q7: Return policy. A7: If you want to replace the received item, you must contact us within 7 days after receiving the item. Returned items should be in their original condition and you should pay for additional shipping.

Guangzhou Gesai Intelligent Electronic Technology Co., Ltd.
C C Kellyyangjing2021@outlook.com C uav-vtoldrone.com
Fuli Yingtong Building, the Pearl River New Town, Tianhe District, Guangzhou, Guangdong, China