Guangdong, China

Negotiable

6-8

T/T

100

M8CO8 IPE V2 Brushless DC Motor for Industrial

M8CO8 IPE V2 85KV 100KV 150KV 180KV

Basic Information

- Place of Origin:
- Brand Name: GS
- Model Number:
- Price:
- Delivery Time:
- Payment Terms:
- Supply Ability:

Product Specification

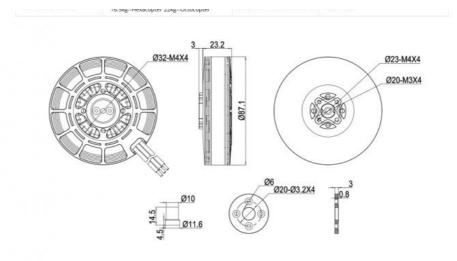
 Motor Model: 	M8CO8 IPE V2.0
D87.1 X26.7 MmMotor Size:	D:87.1 X26.2 Mm
Propeller Mounting Holes:	D:20 M3x4, D:23 M4x4
 Shaft Diameter: 	IN: 15 Mm
Bearing:	6802ZZ*2
Cable Length:	80 Mm 16# Awg(Black) Silicone
Rotor Balance:	≤5 Mg
 Motor Balance: 	≤10 Mg
 Motor Mounting Holes: 	D:32 M4x4
 Disruptive Test: 	500 V
• Highlight:	IPE V2 Brushless DC Motor, M8CO8 IPE V2 Brushless DC Motor, M8CO8 Brushless DC Motor

More Images

M8CO8 IPE V2 Brushless DC Motor

8108 motor is the most classic product among UAV motors. MAD M8 is one of the most efficient motors among them and the most widely used motors for UAV of high-end aerial photography, exploration, archaeology, remote sensing surveying, mapping etc. Endurance flight time varies from 30-120min.

M8 IPE V2 is the latest version of MAD 8108 IPE, more efficient and lighter, great for endurance flights.


Performance characteristics

Efficiency: Efficient motor design to reduce energy consumption and heat production. Noise level: Low operating noise, suitable for applications requiring quiet operation. Heat dissipation management: Effective heat dissipation management to ensure stable performance.

Specifications				
RPM/V	85 KV	Nominal Voltage	125 lipo battery	
No Load Current	0.64A/30V	Internal resistance	207 mΩ	
Motor Weight	280 g	Product Boxed Weight	566g (150 x 150 x 65 mm)	
Maximum Current	24.7 A	Maximum Power	1174W	
Maximum thrust	7.6 kg	Maximum Torque	2.66Nm	
Recommended ESC	MAD AMPX 40A (5-14S) HV 60A (5-14S) HV	Recommended Propellers	28x8.4, 29x8.7, 30x10.0	
UAV take-off weight	125-30"/ 11kgQuadcopter	Single rotor take-off weight	2kg – 3kg	

MAD M	8 IPE 85KV	FLUXER PR	O 28x8.4 N	AMPX	40A (5-14S)	HV		12S	MAX 96°C
[hrottle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficienc [gf/W]
30	47.99	0.79	37.5	26.0	0.223	1115	659	70.2	17.8
35	47.99	1.16	55.6	40.6	0.298	1305	904	75.2	16.7
40	47.98	1.67	79.7	60.8	0.391	1487	1207	77.9	15.5
45	47.97	2.23	106.1	83.3	0.484	1644	1495	80.1	14.4
50	47.95	2.85	136.2	108.7	0.576	1803	1801	81.6	13.5
55	47.94	3.61	172.8	140.8	0.682	1972	2159	83.1	12.7
60	47.92	4.59	219.5	181.7	0.808	2147	2588	84.3	12.0
65	47.89	5.71	272.9	228.0	0.939	2320	2998	85.1	11.2
70	47.87	6.95	332.4	277.8	1.071	2479	3393	85.1	10.4
75	47.85	8.38	400.5	334.4	1.216	2626	3869	85	9.8
80	47.82	9.81	468.7	390.3	1.344	2773	4264	84.7	9.3
85	47.79	11.52	549.9	457.3	1.499	2914	4780	84.5	8.8
90	47.76	13.25	632.3	522.3	1.630	3060	5171	83.9	8.3
95	47.73	15.35	731.8	601.2	1.795	3198	5726	83.4	7.9
100	47.68	18.18	866.3	701,3	1.992	3361	6374	82.1	7,5

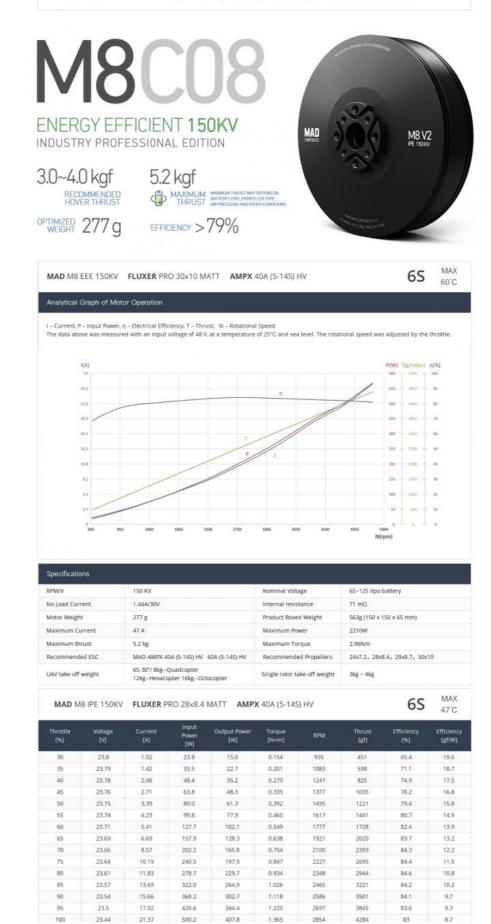
MAD M8 IPE 85KV FLUXER PRO 29x8.7 MATT AMPX 40A (5-145) HV

125 MAX 110°C

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficienc [gf/W]
30	47.97	0.94	44.6	31.8	0.277	1097	768	72.9	17.6
35	47.96	1.39	66.4	50.3	0.377	1276	1076	77.6	16.6
40	47.94	2.03	96.6	75.8	0.495	1463	1434	80	15.2
45	47.93	2.68	127.7	102.1	0.605	1613	1769	81.5	14.1
50	47.91	3.44	164.0	133.3	0.721	1765	2137	82.8	13.3
55	47.9	4.34	207.5	171.0	0.850	1923	2502	84	12.3
60	47.88	5.57	266.3	220.6	1.009	2088	2996	84.4	11.5
65	47.85	6.92	330.5	273.8	1.163	2249	3447	84.3	10.6
70	47.83	8.48	405.3	334.5	1.329	2403	3950	83.9	9.9
75	47.79	10.12	483.0	396.8	1.492	2539	4408	83.5	9.3
80	47.76	11.97	571.0	465.4	1.665	2669	4946	82.8	8.8
85	47.73	13.88	662.0	534.4	1.822	2801	5367	81.9	8.2
90	47.69	16.08	766.4	611.2	1.992	2930	5884	80.9	7.8
95	47.64	18.51	881.2	692.6	2.168	3051	6360	79.6	7.3
100	47.57	21.87	1039.6	798.8	2.387	3195	7022	77.7	6,8

MAD M8 IPE 85KV FLUXER PRO 30x10 MATT AMPX 40A (5-145) HV

MAX 12S HOT


Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	47.96	1.05	49.8	37.4	0.329	1087	897	76.7	18.4
35	47.95	1.56	73.9	57.9	0.439	1260	1226	79.7	16.9
40	47.93	2.34	111.9	89.1	0.589	1444	1676	81.3	15.3
45	47.92	3.08	147.1	118.3	0.711	1591	2032	82.1	14.1
50	47.91	3.95	188.8	153.6	0.845	1736	2435	83	13.2
55	47.89	5.01	239.3	196.0	0.992	1887	2863	83.4	12.2
60	47.86	6.37	304.1	249.3	1.166	2043	3345	83.4	11.2
65	47.83	7.93	378.6	307.8	1.339	2195	3874	82.7	10.4
70	47.8	9.75	465.6	375.1	1.533	2337	4418	81.9	9.7
75	47.77	11.61	554.1	442.6	1.710	2471	4926	81.1	9.0
80	47.73	13.59	648.3	511.9	1.887	2591	5412	80.1	8.5
85	47.69	15.82	754.0	588.4	2.073	2710	5938	79.1	8.0
90	47.63	18.38	874.8	669.1	2.265	2821	6450	77.5	7.5
95	47.58	21.01	999.0	746.9	2.436	2929	6987	75.6	7.1
100	47.52	24.72	1174.3	849.9	2.659	3052	7657	73.1	6.6

The above data are the theoretical values when the input voltage is 48V, for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 25A is non-working zone.8-25A is short-term (about 10-30s), working zone, and below 8A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

65	47.87	9.23	441.5	359.4	1.265	2713	4020	82.9	9.3
70	47.84	11.17	533.6	432.4	1.431	2885	4493	82.4	8.6
75	47.81	13.21	631.2	509.3	1.597	3046	4973	82.1	8.0
80	47.76	15.45	737.5	590.8	1.762	3202	5532	81.4	7.6
85	47.72	18.01	859.0	682.3	1.936	3365	6101	80.6	7.2
90	47.67	20.86	993.9	779.6	2.121	3510	6638	79.5	6.8
95	47.61	24.09	1146.6	884.6	2.313	3653	7281	78.1	6.4
100	47.52	28.63	1359.9	1024.2	2.553	3832	8006	76.1	6.0

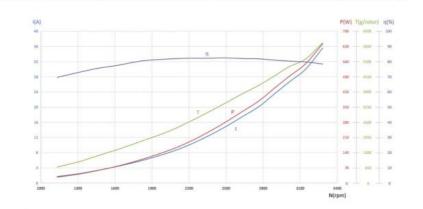
The above data are the theoretical values when the input voltage is 48V, for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 29A is non-working zone.9-29A is short-term (about 10-30s), working zone, and below 9A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

MAD M	8 IPE 150KV	FLUXER P	RO 29x8.7	MATT AMPX	40A (5-145	5) HV		6S	MAX 58°C
Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [Nxm]	RPM	Thrust [gf]	Efficiency [%]	Efficienc [gf/W]
30	23.79	1,18	27.8	18.3	0.192	913	523	68.6	19.5
35	23.79	1.69	39.5	27.7	0.251	1055	700	72.6	18.3
40	23.77	2.46	57.8	43.2	0.338	1222	955	77.1	17,1
45	23.76	3.24	76.6	58.7	0.414	1354	1188	79.2	16.0
50	23.75	4.04	95.6	74.1	0.485	1461	1394	80	15.0
55	23.72	5.07	119.8	94.1	0.569	1580	1658	81.1	14.3
60	23.7	6.21	146.8	116.8	0.656	1702	1922	82	13.5
65	23.67	8.08	190.9	154.4	0.790	1867	2337	83.3	12.6
70	23.65	9.84	232.3	189.4	0.902	2006	2664	83.9	11.8
75	23.61	11.74	276.6	226.2	1.017	2124	2994	83.9	11.1
80	23.57	13.89	327.1	266.3	1.132	2247	3330	83.4	10.4
85	23.53	16.2	380.9	308.9	1.250	2360	3647	83	9.8
90	23.49	18.48	433.6	350.3	1.353	2474	3945	82.5	9.3
95	23,44	21.31	499.0	401.2	1.489	2573	4388	81.9	9.0
100	23.38	25.14	587.3	467.6	1.650	2707	4828	80.9	8.4
MAD M	8 IPE 150KV	FLUXER P	RO 30x10	MATT AMPX	40A (5-145)) HV		65	MAX
	7.00		RO 30x10	-	1) HV		00	67°C
MAD M Throttle [%]	8 IPE 150KV Voltage [V]	FLUXER P Current [A]		MATT AMPX Output Power [W]	40A (5-145; Torque [N×m]) HV RPM	Thrust [gf]	6S Efficiency [%]	67°C
Throttle	Voltage	Current	Input Power	Output Power	Torque			Efficiency	67°C Efficienc
Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	[gf]	Efficiency [%]	67°C Efficienc Igf/W]
Throttle [%] 3D	Voltage [V] 23.8	Current [A] 1.32	Input Power [W] 31.0	Output Power [W] 21.4	Torque [N×m] 0.228	RPM 896	[gf] 617	Efficiency [%] 71.5	67°C Efficienc Lgf/W] 20,6
Throttle [%] 30 35	Voltage [V] 23.8 23.78	Current [A] 1.32 1.9	Input Power [W] 31.0 44.4	Output Power [W] 21.4 32.2	Torque [N×m] 0.228 0.297	RPM 896 1035	Lgf] 617 819	Efficiency [%] 71.5 74.8	67°C Efficienc [gf/W] 20.6 19.0
Throttle [%] 30 35 40	Voltage [V] 23.8 23.78 23.76	Current [A] 1.32 1.9 2.81	Input Power [W] 31.0 44.4 66.5	Output Power [W] 21,4 32.2 50,4	Torque [N×m] 0.228 0.297 0.400	RPM 896 1035 1204	Lgf1 617 819 1120	Efficiency [%] 71.5 74.8 78.8	67°C Efficienc Igf/W] 20.6 19.0 17.5
Throttle [%] 30 35 40 45	Voltage [V] 23.8 23.78 23.76 23.75	Current [A] 1.32 1.9 2.81 3.76	Input Power [W] 31.0 44.4 66.5 88.8	Output Power [W] 21.4 32.2 50.4 69.2	Torque [N×m] 0.228 0.297 0.400 0.495	RPM 896 1035 1204 1335	1817 617 819 1120 1389	Efficiency [%] 71.5 74.8 78.8 80.5	67°C Efficienc Igf/WJ 20.6 19.0 17.5 16.1
Throttle [%] 30 35 40 45 50	Voltage [V] 23.8 23.78 23.76 23.75 23.75 23.73	Current [A] 1.32 1.9 2.81 3.76 4.61	Input Power [W] 31.0 44.4 66.5 88.8 108.8	Output Power [W] 21.4 32.2 50.4 69.2 84.9	Torque [N×m] 0.228 0.297 0.400 0.495 0.568	RPM 896 1035 1204 1335 1428	1597 617 819 1120 1389 1597	Efficiency [%] 71.5 74.8 78.8 80.5 80.6	67°C Efficienc Lgf/WJ 20.6 19.0 17.5 16.1 15.2
Throttle [%] 30 35 40 45 50 55	Voltage [V] 23.8 23.78 23.76 23.75 23.75 23.73 23.71	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93	Input Power [W] 31.0 44.4 66.5 88.8 108.8 108.8 140.1	Output Power [W] 21.4 32.2 50.4 69.2 84.9 110.7	Torque [N×m] 0.228 0.297 0.400 0.495 0.568 0.680	RPM 896 1035 1204 1335 1428 1556	Lgf) 617 819 1120 1389 1597 1910	Efficiency [%] 71.5 74.8 78.8 80.5 80.6 81.4	67°C Efficienc LgfwJ 20.6 19.0 17.5 16.1 15.2 14.0
Throttle [%] 30 35 40 45 50 55 60	Voltage [V] 23.8 23.78 23.76 23.75 23.75 23.73 23.71 23.68	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93 7.52	Input Power [W] 31.0 44.4 66.5 88.8 108.8 108.8 140.1 177.7	Output Power [W] 21.4 32.2 50.4 69.2 84.9 110.7 142.1	Torque [N×m] 0.228 0.297 0.400 0.495 0.568 0.680 0.680 0.798	RPM 896 1035 1204 1335 1428 1556 1702	Lgt) 617 819 1120 1389 1597 1910 2266	Efficiency [%] 71.5 74.8 76.8 80.5 80.6 81.4 82.4	67°C Efficienc Lgf/w] 20.6 19.0 17.5 16.1 15.2 14.0 13.1
Throttle [%] 30 35 40 45 50 55 60 65	Voltage [V] 23.8 23.76 23.76 23.75 23.75 23.75 23.73 23.71 23.68 23.65	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93 7.52 9.33	Input Power [VV] 31.0 44.4 66.5 88.8 108.8 140.1 177.7 220.3	Output Power [W] 21.4 32.2 50.4 69.2 84.9 1110.7 1142.1 177.4	Torque [N×m] 0.228 0.297 0.400 0.495 0.568 0.680 0.798 0.922	896 1035 1204 1335 1428 1556 1702 1839	Lg1 617 819 1120 1389 1597 1910 2266 2622	Efficiency [%] 71.5 74.8 78.8 80.5 80.6 81.4 82.4 82.8	67°C Efficienc Lsf/w] 20.6 19.0 17.5 16.1 15.2 14.0 13.1 12.2
Throttle [%] 30 35 40 45 50 55 60 65 70	Voltage [M] 23.8 23.78 23.76 23.76 23.75 23.75 23.73 23.71 23.68 23.65 23.63	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93 7.52 9.33 11.25	Input Power [V/] 31.0 44.4 66.5 88.8 108.8 108.8 140.1 177.7 220.3 265.3	Cutput Power [W] 21.4 32.2 50.4 69.2 84.9 110.7 142.1 177.4 214.1	Torque [N×m] 0.228 0.297 0.400 0.495 0.568 0.680 0.798 0.922 1.041	896 1035 1204 1335 1428 1556 1702 1839 1963	Lg1 617 819 1120 1389 1597 1910 2266 2622 2934	Efficiency [%] 71.5 74.8 78.8 80.5 80.6 81.4 82.4 82.4 82.8 82.9	67°C Efficienc [gfw] 20.6 19.0 17.5 16.1 15.2 14.0 13.1 12.2 11.4
Throttle [%] 30 35 40 45 50 55 60 65 70 75	Voltage [V] 23.8 23.76 23.75 23.75 23.75 23.73 23.71 23.68 23.65 23.65 23.63 23.58	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93 7.52 9.33 11.25 13.45	Input Power [V4] 31.0 44.4 66.5 88.8 108.8 108.8 140.1 177.7 220.3 265.3 316.8	Output Power [W] 21.4 32.2 50.4 69.2 84.9 1110.7 142.1 177.4 214.1 254.3	Torque [Nim] 0.228 0.297 0.400 0.495 0.468 0.495 0.568 0.680 0.798 0.922 1.041 1.170	RPM 896 1035 1204 1335 1428 1556 1702 1839 1963 2077	Lgt1 617 819 1120 1389 1597 1910 2266 2622 2934 3326	Efficiency [%] 71.5 74.8 78.8 80.5 80.6 81.4 82.4 82.4 82.4 82.9 82.3	67°C Efficienc Egfwy 20.6 19.0 17.5 16.1 15.2 14.0 13.1 12.2 11.4 10.8
Throttle [%] 30 35 40 45 50 55 60 65 70 75 80	Voltage M 23.8 23.76 23.75 23.75 23.75 23.73 23.71 23.68 23.65 23.65 23.63 23.58 23.54	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93 7.52 9.33 11.25 13.45 15.89	Input Power [V4] 31.0 44.4 66.5 88.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 109.1 200.3 200.3 200.3 200.3 200.3 200.3 200.3 200.3 200.5	Output Power [W] 21.4 32.2 50.4 69.2 84.9 1110.7 142.1 117.7 214.1 254.3 298.3	Torque [N×m] 0.228 0.297 0.400 0.495 0.568 0.660 0.798 0.922 1.041 1.170 1.305	RPM 896 1035 1204 1335 1428 1556 1702 1839 1963 2077 2182	Lgt1 617 819 1120 1389 1597 1910 2266 2622 2934 3326 3704	Efficiency [%] 71.5 74.8 80.5 80.6 81.4 82.4 82.4 82.8 82.9 82.3 81.7	67°C Efficienc Lst/vyj 20.6 19.0 17.5 16.1 15.2 14.0 13.1 12.2 11.4 10.8 10.1
Throttle [%] 30 35 40 45 50 55 60 65 70 75 80 85	Voltage [V] 23.8 23.76 23.75 23.75 23.73 23.71 23.68 23.65 23.65 23.63 23.58 23.54 23.54 23.54	Current [A] 1.32 1.9 2.81 3.76 4.61 5.93 7.52 9.33 7.52 9.33 11.25 13.45 15.89 18.42	Input Power [WJ] 31.0 44.4 66.5 88.8 108.8 108.8 140.1 177.7 220.3 265.3 316.8 373.6 432.5	Output Power [W] 21.4 32.2 50.4 69.2 84.9 110.7 142.1 1177.4 2214.1 2254.3 298.3 342.5	Torque [N×m] 0.228 0.297 0.400 0.495 0.568 0.680 0.798 0.922 1.041 1.170 1.305 1.424	RPM 896 1035 1204 1335 1428 1556 1702 1839 1963 2077 2182 2297	Lgt) 617 819 1120 1389 1597 1910 2266 266 266 262 2934 3326 3704 3992	Efficiency [%] 71.5 74.8 80.5 80.6 81.4 82.4 82.8 82.9 82.3 81.7 80.9	67°C Efficienc Lst/vuj 20.6 19.0 17.5 16.1 15.2 14.0 13.1 12.2 11.4 10.8 10.1 9.4

MAD M8 IPE 150KV HAVOC 24x7.2 folding propeller AMPX 80A (5-145)

125 MAX 91°C

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	47.71	2.14	102.3	70.9	0.364	1859	1243	70.68	12.4
35	47.68	3	142.9	103.1	0.464	2121	1613	73.33	11.5
40	47.65	4.18	199.0	151.5	0.603	2397	2121	77.36	10.8
45	47.61	5.87	279.5	220.4	0.774	2717	2713	80.01	9.9
50	47.56	7.84	372.8	299.9	0.950	3016	3359	81.45	9.1
55	47.51	9.94	472.2	382.5	1.116	3272	3968	81.89	8.5
60	47.45	12.33	585.2	475.9	1.291	3519	4555	82.08	7.9
65	47.39	14.89	705.8	572.0	1.459	3743	5126	81.71	7.3
70	47.42	17.78	843.1	681.2	1.640	3966	5735	81.52	6.9
75	47.33	21.35	1010.3	811.6	1.852	4184	6493	80.89	6.5
80	47.31	25.6	1210.9	961.9	2.095	4385	7268	79.94	6.0
85	47.21	29.84	1408.8	1102.3	2.292	4592	7951	78.58	5.7
90	47.12	34.25	1614.1	1245.9	2.484	4790	8574	77.36	5.3
95	47.02	40.05	1883.3	1414.3	2.732	4944	9404	75.22	5.0
100	46.94	47.09	2210.6	1602.6	2.960	5170	10189	73.95	4.7


The above data are the theoretical values when the input voltage is 48V. for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 47A is non-working zone.15-47A is short-term (about 10-30s), working zone, and below 15A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

anytical Graph of Motor Operation

I – Current, P – Input Power, η – Electrical Efficiency, T – Thrust, N – Rotational Speed The data above was measured with an input voltage of 24 V, at a temperature of 25°C and sea level. The rotational speed was adjusted by the throttle.

Specifications			
RPM/V	180 KV	Nominal Voltage	65 lipo battery
No Load Current	2.2A/30V	Internal resistance	49 mΩ
Motor Weight	283 g	Product Boxed Weight	569g (150 x 150 x 65 mm)
Maximum Current	48 A	Maximum Power	1100W
Maximum thrust	6.9 kg	Maximum Torque	2.4Nm
Recommended ESC	MAD AMPX 40A (5-145) HV 60A (5-145) HV	Recommended Propellers	28x8.4, 29x8.7, 30x10.0
UAV take-off weight	6S-28"/ 9kgQuadcopter 13.5kgHexacopter 17kgOctocopter	Single rotor take-off weight	2kg - 3kg

MAD M8 IPE 180KV FLUXER PRO 28x8.4 MATT AMPX 60A (5-145) HV

65 MAX 90°C

Throttle [%]	Voltage [V]	Current (A)	Input Power (W)	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.79	1.7	39.8	26.9	0.227	1133	683	69.6	17.6
35	23.77	2,48	58.4	41.4	0.301	1314	920	73	16.2
40	23.76	3.36	79.5	58.0	0.379	1464	1173	75.6	15.3
45	23.74	4.38	103.3	77.6	0.457	1621	1432	77.5	14.3
50	23.71	5.9	139.5	108.7	0.572	1817	1794	80.4	13.3
55	23.67	8.01	189.1	150.2	0.705	2037	2216	81.7	12.1
60	23.64	9,99	235.6	188.4	0.819	2198	2611	82.2	11.4
65	23.6	12.33	290.6	232.9	0.946	2351	3020	82.2	10.7
70	23.56	14.74	346.7	279.1	1.070	2491	3413	82.4	10.1
75	23.51	17.46	409.9	328.9	1.195	2630	3817	82	9.5
80	23.46	20.12	471.6	378.1	1.306	2765	4184	81.8	9.0
85	23.4	23.24	543.5	432.7	1.434	2882	4553	81	8.5
90	23.35	26.55	619.5	490.3	1.556	3008	4974	80.3	8.1
95	23.29	29.81	693.9	546.9	1.664	3138	5291	79.8	7.7
100	23.19	35.58	824.7	641.8	1.868	3282	6004	78.4	7.3

MAD M8 IPE 180KV FLUXER PRO 29x8.7 MATT AMPX 80A (5-145)

6S MAX HOT

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/w]
30	23.79	1.93	45.4	31.6	0.275	1099	764	72.2	17.4
35	23.76	2.92	68.9	50.2	0.374	1284	1064	75.1	15.9
40	23.74	3.96	93.8	69.4	0.464	1430	1329	76.4	14.6
45	23.72	5.2	122.9	93.4	0.566	1576	1642	78.4	13.8
50	23.69	7.11	168.1	131.4	0.710	1770	2089	80.6	12.8
55	23.65	9.18	216.6	171.5	0.845	1937	2494	81.5	11.8
60	23.61	12.11	285.3	226.2	1.020	2119	3001	81.3	10.8
65	23.56	14.76	347.2	273.6	1.153	2266	3402	80.7	10.0
70	23.51	17.65	414.6	326.0	1.297	2401	3830	80.4	9.4
75	23.45	20.74	486.0	380.9	1.439	2529	4241	79.9	8.9
80	23.4	24,05	562.0	437.0	1.576	2649	4607	79	8.3
85	23.34	27.52	641.9	495.2	1.716	2755	5033	78.2	8.0
90	23.26	31.49	731.9	558.8	1.862	2866	5469	77.2	7.6
95	23.19	35.69	827.2	623.9	2.006	2971	5904	76	7.2
100	23.07	41.95	967.0	720.4	2.210	3113	6458	74.7	6.7

MAD M8 IPE 180KV FLUXER PRO 30x10 MATT AMPX 80A (5-145)

65 MAX 108°C

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.77	2.29	53.9	39.2	0.338	1111	886	75.3	17.0
35	23.75	3.56	84.2	64.0	0.473	1293	1295	78,6	15.9
40	23.72	4.98	117.7	91.3	0.593	1470	1659	80.1	14.6
45	23.69	6.54	154.5	121.2	0.717	1614	2025	80.8	13.5
50	23.66	8.45	199.5	156.7	0.855	1752	2424	80.8	12.5
55	23.62	10.66	251.5	198.2	0.996	1902	2794	81	11.4
60	23.57	13.44	316.3	248.2	1.156	2051	3273	80.5	10.6
65	23.52	16.58	389.4	303.3	1.322	2191	3747	79.6	9.8

70	23.46	20.06	470.1	361.9	1.488	2323	4214	78.5	9.1
75	23.39	23.69	553.4	420.5	1.645	2442	4663	77.2	8.6
80	23.32	27.46	639.8	479.6	1.794	2553	5094	76	8.1
85	23.23	31.89	740.3	544.4	1.960	2652	5538	74.2	7.6
90	23.16	36.48	844.4	608.4	2.110	2753	5983	72.5	7.1
95	23.07	41.5	957.1	673.6	2.265	2840	6461	70.6	6.8
100	22.95	48.01	1101.3	754.4	2.440	2953	6921	71.4	6.6

The above data are the theoretical values when the input voltage is 24V. for reference only. In the case of room temperature of 25°C and no additional cooling device. the current over 48A is non-working zone.17-48A is short-term (about 10-305), working zone, and below 17A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

Our Services

1. We provide 1 Year Warranty. Buy with confidence.

2. If you are not satisfied when you receive your item, please return it within 14 days for a replacement or money back. Please contact me before you return it.

3. If item is defective in 3 months, We will send you a replacement without extra charger, or offer refund after we receive the defective item.

4. If item is defective after 3 months, you can still send it back to us. We will send you a new one after receiving the defective item. But you have to pay the extra shipping fee.

FAQ

Q1: Do you support OEM/ODM?

A1: Yes. We can print your logo on the product. Q2: About samples.

A2: Under normal circumstances, samples will be ready within 7 days, and 10-20 days for OEM/ODM orders. Sample fee and

shipping will be charged. Q3: What is the delivery time?

A3: For regular orders, we can ship within 15 days, for OEM/ODM, we can ship within 25-45 days (depending on the quantity). In the event of delays, we will notify you in advance of the status and resolution.

Q4: What is the minimum order quantity?

A4: There is no MOQ for wholesale (1 piece accepted), including OEM/ODM.

Q5: What are your payment terms?

A5: L/C.TT100%.

Q6: Can you reduce the shipping cost?

A6: When calculating the shipping cost for you, we always choose the cheapest and safest express. Although we have partnerships with shipping companies, we can't keep costs down because it's not us who get paid. If you think it's expensive for you. You can always make your own choice.

Q7: Return policy.

A7: If you want to replace the received item, you must contact us within 7 days after receiving the item. Returned items should be in their original condition and you should pay for additional shipping.

Guangzhou Gesai Intelligent Electronic Technology Co., Ltd.

@ uav-vtoldrone.com

Kellyyangjing2021@outlook.com

0

Fuli Yingtong Building, the Pearl River New Town, Tianhe District, Guangzhou, Guangdong, China