

CM 4320 FPV Brushless DC Motor For Disruptive Test 500 V

Basic Information

• Place of Origin: Guangdong, China

Brand Name: GSModel Number: CM 4320Price: Negotiable

Product Specification

Motor Model: SWIFT CM4320 V1.0Motor Size: D:51 X73.2 Mm

Propeller Mounting Holes: M6 Nut
Shaft Diameter: IN: 6 Mm
Bearing: 606 ZZ*3

Number Of Pole Pairs: 7
Varnished Wire Degree: 220°C
Motor Balance: 180°C

• Cable Length: 750 Mm 14# Awg Silicone

Motor Mounting Holes: D:30 M4x4Disruptive Test: 500 V

Highlight: CM 4320 Brushless DC Motor,
 FPV Brushless DC Motor,

CM 4320 FPV Brushless DC Motor

More Images

CM 4320 FPV Brushless DC Motor

The CM Series is the highest dust level motor and the best heat dissipation among FPV motors, specially designed for film shooting work.

1.Two ultra-thin stainless steel dust filters are added inside the stator for proactive heat dissipation design.
 2.The split exhaust blade is added inside the rotor.3.Providing robust power for 3-12S, 13X10X3 inch propeller X4 X8 cinematic drones with heavy payloads

High efficiency: The CM 4320 motor is known for its efficiency, which is critical to maximizing flight time and overall performance, especially in heavy or long-range UAVs.

High power and torque: With a larger stator size, the CM 4320 offers greater power and torque, making it ideal for drones carrying heavier payloads, such as larger cameras or other equipment.

Durability: To meet the demands of high-power applications, the motor features high-quality materials and construction to ensure long-term reliability.

Precise control: Electronic commutation in brushless DC motors provides precise control of speed and torque, which are essential for stable and responsive flight

SWIFT CM4320

ENERGY EFFICIENT 380KV X8 FILM CIMATIC LIFTER MAKER

340 g

7.90 kgf

MAXIMUM MAXIMUM THRUST MAY DEPEND ON THRUST BATTERY LEVEL PROPELLER TYPE.

ARE DESCRIBED AN OFFICE PARTY OF THRUST BATTERY LEVEL PROPERTY.

Analytical Graph of Motor Operation

I - Current, P - Input Power, η - Electrical Efficiency, T - Thrust. N - Rotational Speed
The data above was measured with an input voltage of 24 V, at a temperature of 25°C and sea level. The rotational speed was adjusted by the throttle.

KA)

P(W) Tig/rounry n(gf/w)

1250

1350

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

1050

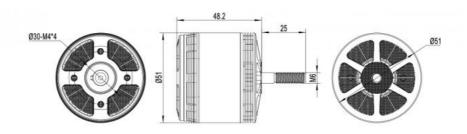
1050

1050

1050

1050

1050


1050

1050

1050

Motor Model	MAD Swift CM4320 V1.0	Number of pole pairs	7
Stator	TAIWAN / Anticorrosive	Varnished wire Degree	220°C
Motor Size	D:50 × 56.5 mm	Magnet Degree	180°C
Degree of Protection	IP45	Cable Length	750 mm 14# Awg(Black/Red) silicone
Centrifugal Heat Dissipation	YES	Rotor Balance	≤5 mg
Propeller Mounting Holes	M6 Nut	Motor Balance	≤10 mg
Shaft Diameter	IN: 6 mm	Motor Mounting Holes	D:30 M4×4
Bearing	EZO 606 ZZ *3	Disruptive test	500 V

Specifications				
RPM/V	380 KV	Nominal Voltage	12S lipo battery	
No Load Current	2.6A/20V	Internal resistance	46.5mΩ	
Motor Weight	340 g	Product Boxed Weight		
Maximum Current	79.8 A	Maximum Power	3788W	
Maximum thrust	7.9 kg	Maximum Torque	2.3 Nm	
Recommended ESC	4)	Recommended Propellers	13x10x3	

MAD SWIFT CM4320 925KV 13x10x3 Carbon Fiber								125	
Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficien [gf/W
30	44.15	3.62	159.8	114.1	0.242	4502	1032	71.4	6.5
35	44.07	5.21	229.6	170,1	0.316	5141	1364	74.1	5.9
40	43.98	7.91	347.9	268.9	0.431	5961	1871	77.3	5.4
45	43.87	11,17	490.0	387.6	0.553	6695	2386	79.1	4.9
50	43.75	15	656.3	521.7	0.676	7368	2897	79.5	4.4
55	43.63	18.54	808.9	644.7	0.779	7902	3306	79.7	4.1
60	43.44	23.69	1029.1	816.1	0.919	8480	3834	79.3	3.7
65	43.28	28.73	1243.4	977.3	1.039	8986	4243	78.6	3.4
70	43.06	35.11	1511.8	1170.2	1.170	9552	4776	77.4	3,2
75	42.87	40.53	1737.5	1324.0	1.258	10050	5203	76.2	3.0
80	42.63	46.38	1977.2	1504.6	1.369	10498	5729	76.1	2.9
85	42.34	54.36	2301.6	1745.3	1.537	10845	6266	75.83	2.7
	42.05	61.34	2579.3	1945.3	1.660	11191	6650	75.42	2.6
90	42.05								
90 95	41.74	71.24	2973.6	2233.1	1.866	11426	7093	75.1	2.4
95 100		71.24 75.94	2973.6 3148.5 3x10x3 Ca	2355.1	1.866 1.932	11426 11644	7093 7334	75.1 74.8	2.3
95 100 MAD SV	41.74 41.46 VIFT CM4320 Voltage	71.24 75.94 925KV 1	3148.5 3x10x3 Ca Input Power	2355.1 rbon Fiber Output Power	1,932 Torque		7334 Thrust	74.8 Efficiency	2.3 12S Efficien
95 100 MAD SV hrottle [%]	41.74 41.46 VIFT CM4320 Voltage (VI	71.24 75.94 925KV 1	3148.5 3x10x3 Ca Input Power [W]	2355.1 rbon Fiber Output Power [W]	1.932 Torque [N×m]	11644 RPM	7334 Thrust [gf]	74.8 Efficiency [%]	12S Efficient
95 100 MAD SV Throttle [%]	41.74 41.46 WIFT CM4320 Voltage (VI 50.02	71.24 75.94 925KV 1 Current [A]	3148.5 3x10x3 Ca Input Power [W] 191.6	2355.1 rbon Fiber Output Power [W] 140.6	1,932 Torque [N×m] 0,281	11644 RPM	7334 Thrust [gf]	74.8 Efficiency [%]	2.3 12S Efficier Igf/W 6.1
95 100 MAD SV hrottle [%] 30 35	41.74 41.46 WIFT CM4320 Voltage [VI 50.02 49.93	71.24 75.94 925KV 1 Current [A] 3.83 5.53	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1	2355.1 rbon Fiber Output Power [W] 140.6 209.8	1.932 Torque [N×m] 0.281 0.367	RPM 4777 5458	7334 Thrust [af] 1174 1563	74.8 Efficiency [%] 73.4 76	2.3 12S Efficier Igf/W 6.1 5.7
95 100 MAD SV hrottle [%] 30 35 40	41.74 41.46 WIFT CM4320 Voltage [VI 50.02 49.93 49.85	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1 404.3	2355.1 rbon Fiber Output Power [W] 140.6 209.8 317.4	1.932 Torque [N×m] 0.281 0.367 0.486	RPM 4777 5458 6236	7334 Thrust [sf] 1174 1563 2105	74.8 Efficiency [%] 73.4 76 78.5	2.3 12S Efficier Igf/W 6.1 5.7 5.2
95 100 MAD SV hrottle [%] 30 35 40 45	41.74 41.46 VIFT CM4320 Voltage [VI] 50.02 49.93 49.85 49.68	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1 404.3 573.3	2355.1 rbon Fiber Output Power [W] 140.6 209.8 317.4 462.1	1.932 Torque [N×m] 0.281 0.367 0.486 0.630	RPM 4777 5458 6236 7005	7334 Thrust [sf] 1174 1563 2105 2705	74.8 Efficiency [%] 73.4 76 78.5 80.6	2.3 12S Efficier Igf/W 6.1 5.7 5.2 4.7
95 100 MAD SV Throttle [%] 30 35 40 45 50	41.74 41.46 WIFT CM4320 Voltage [V] 50.02 49.93 49.85 49.68 49.52	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1 404.3 573.3 763.1	2355.1 rbon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4	1.932 Torque [N×m] 0.281 0.967 0.486 0.630 0.766	RPM 4777 5458 6236 7005 7692	7334 Thrust [sf] 1174 1563 2105 2705 3240	74.8 Efficiency [%] 73.4 76 78.5 80.6 80.9	2.3 12S Efficier Isf/W 6.1 5.7 5.2 4.7 4.2
95 100 MAD SV hrottle [%] 30 35 40 45 50 55	41.74 41.46 WIFT CM4320 Voltage [VI 50.02 49.93 49.85 49.68 49.52 49.31	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41 20.11	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1 404.3 573.3 763.1 991.6	2355.1 Proon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4 795.3	Torque [N×m] 0.281 0.367 0.486 0.630 0.766 0.910	RPM 4777 5458 6236 7005 7692 8345	7334 Thrust [sf] 1174 1563 2105 2705 3240 3803	74.8 Efficiency [%] 73.4 76 80.6 80.9 80.2	2.3 12S Efficier [gf/W 6.1 5.7 5.2 4.7 4.2 3.8
95 100 MAD SV hrottle [%] 30 35 40 45 50 55 60	41.74 41.46 VIFT CM4320 Voltage (VI) 50.02 49.93 49.85 49.68 49.52 49.31 49.16	71.24 75.94 925KV 1 Current (A) 3.83 5.53 8.11 11.54 15.41 20.11 24.69	3148.5 3x10x3 Ca Input Power IVI 191.6 276.1 404.3 573.3 763.1 991.6 1213.8	2355.1 rbon Fiber Output Power [VV] 140.6 209.8 317.4 462.1 617.4 795.3 963.7	Torque (N×m) 0.281 0.367 0.486 0.630 0.766 0.910 1.042	RPM 4777 5458 6236 7005 7692 8345 8836	7334 Thrust [sf] 1174 1563 2105 2705 3240 3803 4287	74.8 Efficiency (%) 73.4 76 78.5 80.6 80.9 80.2 79.4	2.3 12S Efficier 18f/W 6.1 5.7 5.2 4.7 4.2 3.8 3.5
95 100 MAD SV Throttle (%) 30 35 40 45 50 55 60 65	41.74 41.46 VIFT CM4320 Voltage (VI 50.02 49.93 49.85 49.68 49.52 49.31 49.16 49.01	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41 20.11 24.69 29.7	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1 404.3 573.3 763.1 991.6 1213.8	2355.1 rbon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4 795.3 963.7 1147.0	1.932 Torque [N+m] 0.281 0.367 0.486 0.630 0.766 0.910 1.042 1.177	RPM 4777 5458 6236 7005 7692 8345 8836 9308	7334 Thrust [sf] 1174 1563 2105 2705 3240 3803 4287 4710	74.8 Efficiency (%) 73.4 76 78.5 80.6 80.9 80.2 79.4 78.8	2.3 12S Efficier 18f/W 6.1 5.7 5.2 4.7 4.2 3.8 3.5 3.2
95 100 MAD SV hrottle [%] 30 35 40 45 50 55 60 65 70	41.74 41.46 VIFT CM4320 Voltage IVI 50.02 49.93 49.85 49.68 49.52 49.31 49.16 49.01 48.85	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41 20.11 24.69 29.7 35.87	3148.5 3x10x3 Ca Input Power [W] 191.6 276.1 404.3 573.3 763.1 991.6 1213.8 1455.6 1752.2	2355.1 rbon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4 795.3 963.7 1147.0 1354.5	1.932 Torque [N+m] 0.281 0.367 0.486 0.630 0.766 0.6910 1.042 1.177 1.322	RPM 4777 5458 6236 7005 7692 8345 8836 9308	7334 Thrust [sf] 1174 1563 2105 2205 3240 3803 4287 4710 5278	74.8 Efficiency [%] 73.4 76 78.5 80.6 80.9 80.2 79.4 78.8 77.3	23 12S Efficier [sf/W 6.1 6.7 5.2 4.7 4.2 3.8 3.5 3.2 3.0
95 100 MAD SV Throttle [%] 30 35 40 45 50 55 60 65 70	41.74 41.46 VIFT CM4320 Voltage IVI 50.02 49.93 49.85 49.68 49.52 49.31 49.16 49.16 48.85 48.64	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41 20.11 24.69 29.7 35.87 42.77	3148.5 Ca Imput Power [W] 191.6 226.1 404.3 573.3 763.1 991.6 1213.6 1455.6 1752.2 2080.3	2355.1 rbon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4 795.3 963.7 1147.0 1354.5 1603.9	1.932 Torque [N×m] 0.281 0.367 0.486 0.630 0.766 0.910 1.042 1.177 1.322 1.488	RPM 4777 5458 6236 7005 7692 8345 8836 9308 9788 10295	7334 Thrust (sf) 1174 1563 2105 2705 3240 3803 4287 4710 5278 5804	74.8 Efficiency [%] 73.4 76 78.5 80.6 80.9 80.2 79.4 78.8 77.3	2.3 12S Efficient 15fw 15
95 100 MAD SV throttle [%] 30 35 40 45 50 55 60 65 70 75 80	41.74 41.46 VIFT CM4320 Voltage [V] 50.02 49.93 49.85 49.68 49.52 49.31 49.16 49.01 48.85 48.64 48.46	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41 20.11 24.69 29.7 35.87 42.77 47.1	3148.5 Ca Input Power (W) 191.6 276.1 404.3 573.3 763.1 991.6 1218.8 1455.6 1752.2 2080.3 2282.5	2355.1 Proon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4 795.3 963.7 1147.0 1354.5 1603.9 1755.2	1.932 Torque [N×m] 0.281 0.3967 0.496 0.630 0.766 0.910 1.042 1.177 1.322 1.488 1.573	RPM 4777 5458 6236 7005 7692 8345 8836 9308 9788 10295 10658	7334 Thrust (8f) 1174 1563 2105 2705 3240 3803 4287 4710 5278 5804 6198	74.8 Efficiency [%] 73.4 76 78.5 80.6 80.9 80.2 79.4 78.8 77.3 77.1 76.9	2.3 12S Efficient Isf/W 6.1 5.7 5.2 4.7 4.2 3.8 3.5 5 3.2 3.0 2.8 2.7
95 100 MAD SV hrottle [%] 30 35 40 45 50 60 65 70 75 80 85	41.74 41.46 VIFT CM4320 Voltage (VI 50.02 49.93 49.85 49.68 49.52 49.31 49.16 49.01 49.01 49.01 49.01 49.04	71.24 75.94 925KV 1 Current (A) 3.83 5.53 8.11 11.54 15.41 20.11 24.69 29.7 35.87 42.77 47.1 53.24	3148.5 3x10x3 Ca Input Power IVI 191.6 276.1 404.3 573.3 763.1 991.6 1213.8 1455.6 1752.2 2080.3 2282.5 2567.2	2355.1 Proon Fiber Output Power [VI] 140.6 209.8 317.4 462.1 617.4 795.3 963.7 1147.0 1354.5 1603.9 1755.2 1961.4	1.932 Torque [(%+m)] 0.281 0.367 0.486 0.630 0.766 0.910 1.042 1.177 1.322 1.488 1.573 1.695	RPM 4777 5458 6236 7005 7692 8345 8836 9308 9788 10295 10658 11048	7334 Thrust (sf) 1174 1563 2105 3240 3803 4287 4710 5004 6198 6638	74.8 Efficiency (%) 73.4 76 78.5 80.6 80.9 80.2 79.4 78.8 77.3 77.1 76.9 76.4	23 12S Efficier Isf/W 6.1 5.7 5.2 4.7 4.2 3.8 3.5 3.0 2.8 2.7 2.6
95 100 MAD SV hrottle [56] 30 35 40 45 50 55 60 65 70 75 80	41.74 41.46 VIFT CM4320 Voltage [V] 50.02 49.93 49.85 49.68 49.52 49.31 49.16 49.01 48.85 48.64 48.46	71.24 75.94 925KV 1 Current [A] 3.83 5.53 8.11 11.54 15.41 20.11 24.69 29.7 35.87 42.77 47.1	3148.5 Ca Input Power (W) 191.6 276.1 404.3 573.3 763.1 991.6 1218.8 1455.6 1752.2 2080.3 2282.5	2355.1 Proon Fiber Output Power [W] 140.6 209.8 317.4 462.1 617.4 795.3 963.7 1147.0 1354.5 1603.9 1755.2	1.932 Torque [N×m] 0.281 0.3967 0.496 0.630 0.766 0.910 1.042 1.177 1.322 1.488 1.573	RPM 4777 5458 6236 7005 7692 8345 8836 9308 9788 10295 10658	7334 Thrust (8f) 1174 1563 2105 2705 3240 3803 4287 4710 5278 5804 6198	74.8 Efficiency [%] 73.4 76 78.5 80.6 80.9 80.2 79.4 78.8 77.3 77.1 76.9	23 12S Efficient Isf/W 6.1 5.7 5.2 4.7 4.2 3.8 3.5 3.2 3.0 2.8 2.7

Our Services

- 1. We provide 1 Year Warranty. Buy with confidence.
- 2. If you are not satisfied when you receive your item, please return it within 14 days for a replacement or money back. Please contact me before you return it.
- 3. If item is defective in 3 months, We will send you a replacement without extra charger, or offer refund after we receive the defective item.
- 4. If item is defective after 3 months, you can still send it back to us. We will send you a new one after receiving the defective item. But you have to pay the extra shipping fee.

FAQ

Q2: About samples.

A2: Under normal circumstances, samples will be ready within 7 days, and 10-20 days for OEM/ODM orders. Sample fee and shipping will be charged.

Q3: What is the delivery time?

A3: For regular orders, we can ship within 15 days, for OEM/ODM, we can ship within 25-45 days (depending on the quantity). In the event of delays, we will notify you in advance of the status and resolution.

Q4: What is the minimum order quantity?

A4: There is no MOQ for wholesale (1 piece accepted), including OEM/ODM.

Q5: What are your payment terms?

A5: L/C.TT100%.

Q6: Can you reduce the shipping cost?

A6: When calculating the shipping cost for you, we always choose the cheapest and safest express. Although we have partnerships with shipping companies, we can't keep costs down because it's not us who get paid. If you think it's expensive for you. You can always make your own choice.

Q7: Return policy.

A7: If you want to replace the received item, you must contact us within 7 days after receiving the item. Returned items should be in their original condition and you should pay for additional shipping.

Guangzhou Gesai Intelligent Electronic Technology Co., Ltd.

Kellyyangjing2021@outlook.com

uav-vtoldrone.com

Fuli Yingtong Building, the Pearl River New Town, Tianhe District, Guangzhou, Guangdong, China