5015 IPE V3 Brushless DC Motor 150KV 170KV 270KV 320KV 380KV 420KV

Basic Information

- Place of Origin:
- Brand Name:
- Model Number:
- Price:

Our Product Introduction

- Guangdong, China

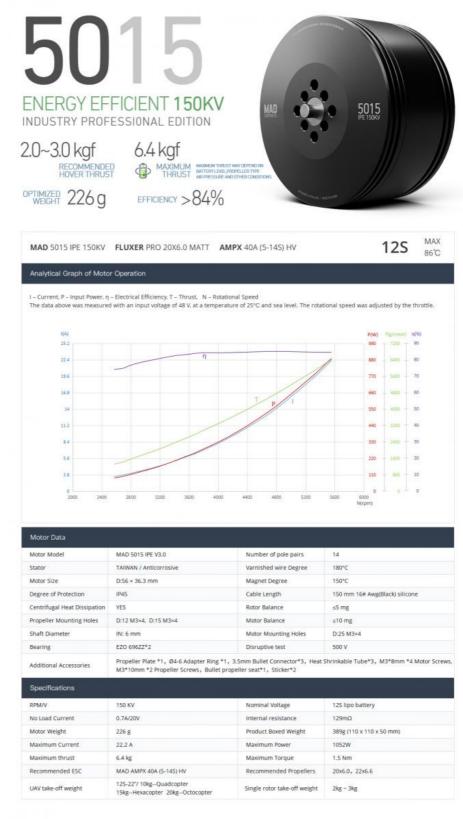
- GS
- 5015 IPE V3 160KV 250KV 320KV 340KV Negotiable

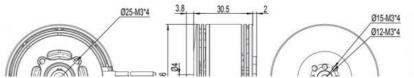
Product Specification

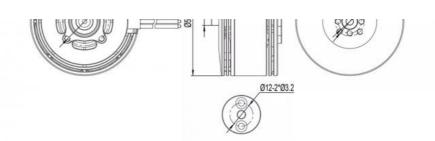
- 5015 IPE V3.0 • Motor Model: • Motor Size: • Propeller Mounting Holes: D:12 M3x4, D:15 M3x4 EZ0 696ZZ*2 • Bearing: • Cable Length:
 - Rotor Balance:
 - Motor Balance:
 - Motor Mounting Holes:
 - Highlight:

More Images

- D:56 X36.3 Mm 150 Mm 16# Awg(Black)silicone ≤5 Mg ≤10 Mg D:25 M3x4 Tethered UAV Customized,
- Customized tethered unmanned aerial vehicle, **Tethered UAV with Mapping Inspection**

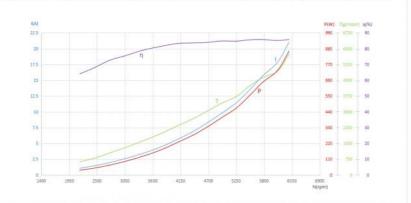






5015 IPE V3 Brushless DC Motor 150KV 170KV 270KV 320KV 380KV 420KV

5015 270KV/320KV As the hot motors in the field, because it is the darling of 8-16kg VTOL aircraft, at the same time 5015 KV150 is also the best power solution for the quadcopter with takeoff weight of 8-14kg. It's widely used for the long-range inspection drone mapping drone surveying drone quadcopter hexcopter multitotor.


MAD 50	015 IPE 150K	V FLUXER	PRO 20X6.	0 MATT AMP	PX 40A (5-1-	4S) HV		12S	MAX 86°C
Throttle [%]	Voltage [V]	Current [A]	input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficienc [gf/W]
30	48.41	0.71	34.4	21.1	0.112	1803	416	61.30	12.1
35	48.41	1.05	50.8	35.4	0.158	2140	616	69.70	12.1
40	48.39	1.37	66.3	49.3	0.196	2401	726	74.40	10.9
45	48.38	1.72	83.2	63.5	0.228	2660	889	76.30	10.7
50	48.37	2.21	106.9	85.1	0.279	2911	1124	79.60	10.5
55	48.35	2.81	135.9	112.4	0.334	3214	1368	82.70	10.1
60	48.33	3.64	175.9	149.4	0.405	3523	1627	84.90	9.2
65	48.3	4.56	220.2	191.9	0.481	3809	1961	87.10	8.9
70	48.27	5.57	268.9	233.8	0.547	4081	2261	86.90	8.4
75	48.24	6.49	313.1	276.3	0.608	4339	2516	88.20	8.0
80	48.2	7.69	370.7	329.2	0.687	4576	2849	88.80	7.7
85	48.16	8.94	430.6	386.4	0.765	4823	3206	89.70	7.4
90	48.11	10.45	502.7	453.4	0.854	5070	3458	90.20	6.9
95	48.07	11.99	576.4	519.9	0.934	5316	3802	90.20	6.6
100	48.01	13.79	662.1	594.1	1.024	5540	4157	89.70	6.3
MAD 50	015 IPE 150K	V FLUXER	PRO 22X6.	6 MATT AM	X 40A (5-1-	4S) HV		125	MAX
								125	120°0
Throttle [%]	Voltage [V]	Current [A]	input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency (%)	Efficien
			Power			RPM 2575		Efficiency	Efficien
[%]	M	M	Power [W]	[W]	[N×m]		(gf)	Efficiency [%]	Efficien [gf/W]
[%] 40	[V] 48	[A] 2.49	Power [W] 119.5	[W] 88.6	[N×m] 0.330	2575	لوٹ) 1319	Efficiency [%] 74.16	Efficien [gf/W] 11.0
[%] 40 42	(V) 48 47.99	[A] 2.49 2.77	Power [W] 119.5 132.9	[W] 88.6 99.4	[N×m] 0.330 0.350	2575 2685	[gf] 1319 1423	Efficiency [%] 74.16 74.76	Efficien [gf/W] 11.0 10.7
40 42 44	[V] 48 47.99 47.98	[A] 2.49 2.77 3.05	Power [W] 119.5 132.9 146.3	IW] 88.6 99.4 112.1	[N×m] 0.330 0.350 0.380	2575 2685 2793	Lgf) 1319 1423 1554	Efficiency (%) 74.16 74.76 76.58	Efficien [gf/W] 11.0 10.7 10.6
[96] 40 42 44 46	[V] 48 47.99 47.98 47.98	[A] 2.49 2.77 3.05 3.39	Power [W] 119.5 132.9 146.3 162.7	WI 88.6 99.4 112.1 127.0	[N×m] 0.330 0.350 0.380 0.420	2575 2685 2793 2905	1319 1423 1554 1703	Efficiency (%) 74.16 74.76 76.58 78.06	Efficien [gf/W] 11.0 10.7 10.6 10.5
[96] 40 42 44 46 48	1VI 48 47.99 47.98 47.98 47.96	[A] 2.49 2.77 3.05 3.39 3.78	Power [W] 119.5 132.9 146.3 162.7 181.3	[W] 88.6 99.4 112.1 127.0 143.7	(N×m) 0.330 0.350 0.380 0.420 0.450	2575 2685 2793 2905 3031	1319 1423 1554 1703 1857	Efficiency [%] 74.16 74.76 76.58 78.06 79.28	Efficien [gf/W] 11.0 10.7 10.6 10.5 10.2
[%5] 40 42 44 46 48 50	VI 48 47.99 47.98 47.98 47.96 47.95	[A] 2.49 2.77 3.05 3.39 3.78 4.22	Power [W] 119.5 132.9 146.3 162.7 181.3 202.3	TWI 88.6 99.4 112.1 127.0 143.7 162.9	[N×m] 0.330 0.350 0.380 0.420 0.450 0.490	2575 2685 2793 2905 3031 3166	1319 1423 1554 1703 1857 2024	Efficiency [%] 74.16 74.76 76.58 78.06 79.28 80.52	Efficien [gf/W] 11.0 10.7 10.6 10.5 10.2 10.0
[%] 40 42 44 46 48 50 52	M 48 47.99 47.98 47.98 47.96 47.95 47.95	[A] 2.49 2.77 3.05 3.39 3.78 4.22 4.72	Power [W] 119.5 132.9 146.3 162.7 181.3 202.3 226.2	TWI 88.6 99.4 112.1 127.0 143.7 162.9 184.6	(N×m) 0.330 0.350 0.380 0.420 0.450 0.490 0.530	2575 2685 2793 2905 3031 3166 3297	1319 1423 1554 1703 1857 2024 2206	Efficiency [%] 74.16 74.76 76.58 78.06 79.28 80.52 81.61	10.7 10.6 10.5 10.2 10.0 9.8
[%] 40 42 44 46 48 50 52 52 54	[V] 48 47.99 47.98 47.98 47.96 47.95 47.95 47.93 47.91	[A] 2.49 2.77 3.05 3.39 3.78 4.22 4.72 5.24	Power [W] 119.5 132.9 146.3 162.7 181.3 202.3 226.2 251.0	[W] 88.6 99.4 112.1 127.0 143.7 162.9 184.6 207.3	(N×m) 0.330 0.350 0.380 0.420 0.450 0.490 0.530 0.580	2575 2685 2793 2905 3031 3166 3297 3422	Left 1319 1423 1554 1703 1857 2024 2206 2394	Efficiency [%] 74.16 74.76 76.58 78.06 79.28 80.52 81.61 82.58	Efficien [gf/W] 11.0 10.7 10.6 10.5 10.2 10.0 9.8 9.5

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
40	48	2.49	119.5	88.6	0.330	2575	1319	74.16	11.0
42	47.99	2.77	132.9	99.4	0.350	2685	1423	74.76	10.7
44	47.98	3.05	146.3	112.1	0.380	2793	1554	76.58	10.6
46	47.98	3.39	162.7	127.0	0.420	2905	1703	78.06	10.5
48	47.96	3.78	181.3	143.7	0.450	3031	1857	79.28	10.2
50	47.95	4.22	202.3	162.9	0.490	3166	2024	80.52	10.0
52	47.93	4.72	226.2	184.6	0.530	3297	2206	81.61	9.8
54	47.91	5.24	251.0	207.3	0.580	3422	2394	82.58	9.5
56	47.89	5.82	278.7	231.6	0.620	3548	2570	83.09	9.2
58	47.87	6.36	304.5	255.2	0.660	3673	2759	83.82	9.1
60	47.85	6.94	332.1	279.7	0.710	3784	2945	84.24	8.9
65	47.8	8.54	408.2	343.8	0.810	4061	3395	84.23	8.3
70	47.74	10.23	488.4	412.9	0.910	4313	3828	84.55	7.8
75	47.67	12.11	577.3	490.1	1.030	4562	4297	84.90	7.4
80	47.6	14.24	677.8	576.6	1.140	4813	4789	85.06	7.1
90	47.43	19.37	918.7	777.7	1.400	5311	5852	84.65	6.4
100	47.31	22.23	1051.7	888.5	1.530	5553	6401	84.48	6.1

The above data are the theoretical values when the input voltage is 48 V, for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 22A is non-working zone.5-22A is short-term (about 10-305), working zone, and below 5A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

Specifications				
RPM/V	170 KV	Nominal Voltage	12S lipo battery	
No Load Current	0.95A / 30V	internal resistance	86mΩ	
Motor Weight	226 g	Product Boxed Weight	390g (110 x 110 x 50 mm)	
Maximum Current	22.2 A	Maximum Power	1004W	
Maximum thrust	5.7 kg	Maximum Torque	1.30 Nm	
Recommended ESC	MAD AMPX 40A (5-14S) HV	Recommended Propellers	20x6.0	
UAV take-off weight	125-207/ 8kgQuadcopter 12kgHexacopter 16kgOctocopter	Single rotor take-off weight	1.5kg - 2kg	

MAD 5015 IPE 170KV FLUXER PRO 20X6.0 MATT AMPX 40A (5-145) HV

125 MAX 120°C

Throttle [%]	Voltage [V]	Current (A)	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust (gf)	Efficiency [%]	Efficiency [gf/W]
30	48.4	1.05	50.8	32.5	0.144	2158	622	64,00	12.3
35	48.39	1.47	71.1	48.5	0.188	2463	807	68.20	11.4
40	48.38	1.98	95.8	69.7	0.241	2763	1054	72.80	11.0
45	48.36	2.56	123.8	93.4	0.293	3044	1287	75.40	10.4
50	48.34	3.38	163.4	128.9	0.363	3392	1606	78.90	9.8
55	48.3	4,41	213.0	173.3	0.441	3752	1952	81,40	9.2
60	48.27	5.67	273.7	227.9	0.531	4098	2343	83.30	8.6
65	48.23	6.91	333.3	279.1	0.605	4405	2680	83.70	8.0
70	48.18	8.32	400.9	336.9	0.686	4690	3049	84.00	7.6
75	48.13	9.8	471.7	400.6	0.770	4968	3415	84.90	7.2
80	48.09	11.42	549.2	465.7	0.847	5250	3720	84.80	6.8
85	48.03	13.46	646.5	553.1	0.958	5513	4228	85.60	6.5
90	47.95	15.69	752.3	645.7	1.068	5773	4627	85.80	6.2
95	47,89	17,76	850.5	724.4	1.142	6057	4906	85.20	5.8
100	47.79	21.01	1004.1	862.0	1.308	6293	5747	85.80	5.7

The above data are the theoretical values when the input voltage is 48 V, for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 21A is non-working zone,7-21A is short-term (about 10-30s), working zone, and below 7A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

5015 ENERGY EFFICIENT 320KV INDUSTRY PROFESSIONAL EDITION

MAD 5015 IPE 320KV FLUXER PRO 22x6.6 MATT XROTOR Pro 60A (4-65)

89°C I – Current, P – Input Power, ŋ – Electrical Efficiency, T – Thrust, N – Rotational Speed. The data above was measured with an input voltage of 24 V, at a temperature of 25°C and sea level. The rotational speed was adjusted by the throttle. I(A) P(W) Tig/notor) n(%) 900 + 6750 + 90 -54 800 - 0000 - 80 48 42 5250 70 700 36 600 4500 60 30 500 1750 - 50 24 400 3000 - 40 300 - 2250 - 30 18 12 200 - 1500 - 20 100 - 750 - 10 . 1. 1. 0 5100 S900 N(rpm)

Specifications			
RPM/V	320 KV	Nominal Voltage	65 lipo battery
No Load Current	2.2A/20V	Internal resistance	49mΩ
Motor Weight	226 g	Product Boxed Weight	389g (110 x 110 x 50 mm)
Maximum Current	62.7 A	Maximum Power	1456W
Maximum thrust	7 kg	Maximum Torque	1.9 Nm
Recommended ESC	XROTOR Pro 60A (4-6S)	Recommended Propellers	20x6.0, 22x6.6, 22x7.0
UAV take-off weight	65-22"/ 9kgQuadcopter 13.5kgHexacopter 18kgOctocopter	Single rotor take-off weight	2kg - 3kg

MAD 5015 IPE 320KV FLUXER PRO 20x6.0 MATT XROTOR Pro 60A (4-65)

6S	MA)
	000

MAX

6S

Throttle [%]	Voltage [V]	Current [A]	Input Power (W)	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.84	1.71	40.4	32.6	0.149	2090	475	81.07	11.8
35	23.85	2.49	58.9	48.2	0.193	2384	672	81.87	11.4
40	23.85	3.4	80.6	65.5	0.235	2659	863	81.26	10.7
45	23.85	4.49	106.5	87.1	0.284	2932	1061	81.72	10.0
50	23.83	5.95	141.3	116.1	0.341	3253	1320	82.16	9.3
55	23.78	7.82	185.3	156.3	0.417	3579	1632	84.28	8.8
60	23.76	10.04	237.9	200.3	0.492	3889	1971	84.13	8.3
65	23.76	12.16	288.2	246.9	0.565	4171	2273	85.65	7.9
70	23.75	14.34	340.3	297.4	0.640	4438	2585	87.37	7.6
75	23.71	17.05	403.6	350.5	0.714	4688	2895	86.82	7.2
80	23.67	20.56	486.1	406.6	0.786	4940	3248	83.65	6.7
85	23.66	23.64	558.8	473.6	0.872	5190	3618	84.77	6.5
90	23.62	26.66	629.3	546.1	0.959	5441	3957	86.78	6.3
95	23.59	31.59	744.7	614.3	1.032	5682	4269	82.47	5.7
100	23.55	37.44	881.2	716.9	1.148	5963	4763	81.32	5.4

MAD 5015 IPE 320KV FLUXER PRO 22x6.6 MATT XROTOR Pro 60A (4-6S)

65 MAX 89°C

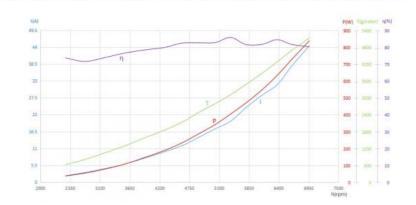
Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.85	2.22	52.5	31.6	0.152	1983	713	60.12	13.6
35	23.84	3.29	77.8	48.8	0.204	2289	959	62.72	12.3
40	23.84	4.5	106.7	74.0	0.276	2560	1224	69.28	11.5
45	23.83	5.98	142.1	104.5	0.355	2814	1518	73.53	10.7
50	23.78	8.04	190.7	141,4	0.437	3094	1886	74.10	9.9
55	23.75	10.34	245.2	190.4	0.536	3393	2249	77.60	9.2
60	23.73	13.36	316.5	244.4	0.634	3680	2687	77.17	8.5
65	23.75	16.78	397.8	298.4	0.723	3942	3041	74.97	7.6
70	23.67	19.19	453.7	352.8	0.804	4190	3386	77.73	7.5
75	23.66	22.86	540.5	421.1	0.913	4405	3825	77.88	7.1
80	23.61	26.22	618.7	485.0	1.001	4628	4206	78.34	6.8
85	23.57	32.2	758.6	560.4	1.105	4846	4661	73.85	6.1
90	23.53	35.09	825.1	641.3	1.211	5057	5074	77.73	6.2
95	23.49	40.06	940.3	728.3	1.324	5254	5550	77.42	5.9
100	23.41	48,26	1128.8	836.8	1.456	5488	6126	74.07	5.4

Output Power Torque

Thrust Efficiency Efficien

[96]	M	[A]	Power [W]	[W]	[N×m]	RPM	[gf]	[96]	[gf/W]
30	23.84	2.82	66.6	47.4	0.242	1874	876	71.20	13.2
35	23.83	4.63	110.0	80.6	0.349	2204	1263	73.27	11.5
40	23.83	6.31	149.9	114.2	0.445	2452	1617	76.19	10.8
45	23.77	8.48	201.0	152.0	0.540	2688	1965	75.57	9.8
50	23.75	10.92	259.0	197.5	0.645	2924	2344	76.25	9.1
55	23.76	14.01	332.2	252.2	0.755	3191	2746	75.85	8.3
60	23.71	17.77	420.8	315.8	0.876	3442	3213	75.02	7.6
65	23.68	21.24	502.3	385.3	1.005	3661	3683	76.70	7.3
70	23.64	26.16	617.9	452.8	1.116	3875	4102	73.26	6.6
75	23.59	30.43	717.5	530.0	1.249	4052	4583	73.87	6.4
80	23.55	34.72	817.0	603.5	1.357	4248	4922	73.86	6.0
85	23.48	40.63	953.5	686.3	1.485	4414	5437	71.97	5.7
90	23.43	45.46	1064.8	760.9	1.580	4598	5853	71.48	5.5
95	23.39	50.81	1187.8	845.1	1.702	4742	6279	71.10	5.3
100	23.24	62.66	1456.0	964.3	1.869	4927	6957	66.20	4.8

The above data are the theoretical values when the input voltage is 24 V, for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 63A is non-working zone.21-63A is short-term (about 10-30s), working zone, and below 21A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.



MAD 5015 380KV FLUXER PRO 18x6.1 MATT XROTOR Pro 60A (4-65)

65 MAX 86°C

Analytical Graph of Motor Oper

I – Current, P – Input Power, n – Electrical Efficiency, T – Thrust, N – Rotational Speed The data above was measured with an input voltage of 24 V, at a temperature of 25°C and sea level. The rotational speed was adjusted by the throttle.

Specifications			
RPM/V	380 KV	Nominal Voltage	6S lipo battery
No Load Current	2.8A/20V	internal resistance	30mΩ
Motor Weight	220 g	Product Boxed Weight	383g (110 x 110 x 50 mm)
Maximum Current	44.5 A	Maximum Power	1044W
Maximum thrust	5.1 kg	Maximum Torque	1.2 Nm
Recommended ESC	XROTOR Pro 60A (4-65)	Recommended Propellers	17x5.8, 18x6.1
UAV take-off weight	6S-18"/ 7kgQuadcopter 10.5kgHexacopter 14kgOctocopter	Single rotor take-off weight	1.5kg ~ 2kg

MAD 5015 IPE 380KV FLUXER PRO 17x5.8 MATT XROTOR Pro 60A (4-6S)

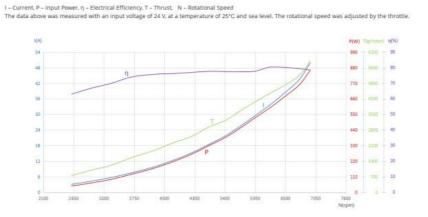
65 MAX 64°C

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.88	1.97	46.6	30.6	0.118	2486	508	66.33	11.0
35	23.87	2.81	66.6	45.7	0.153	2855	672	68.68	10.1
40	23.87	3.82	90.5	66.0	0.196	3219	867	72.90	9.6
45	23.86	5.18	123.4	93.1	0.246	3621	1086	75.46	8.8
50	23.86	6.67	158.8	122.1	0.292	3999	1328	76.84	8.4
55	23.82	8.59	204.0	158.6	0.347	4373	1607	77.72	7.9
60	23.8	10.56	250.8	197.5	0.401	4708	1875	78.71	7.5

65	23.79	12.34	293.2	240.4	0.456	5036	2150	81.97	7.3
70	23.77	15.01	356.5	287.1	0.513	5347	2424	80.49	6.8
75	23.71	17.76	420.4	334.7	0.565	5656	2676	79.57	6.4
80	23.7	21.38	506.3	399.3	0.640	5961	3025	78.86	6.0
85	23.68	23.67	559.8	471.4	0.719	6265	3365	84.20	6.0
90	23.61	28.41	670.1	540.7	0.785	6580	3658	80.67	5,5
95	23.62	33.05	780.1	623.0	0.866	6868	4040	79.90	5.2
100	23.53	37.33	878.1	729.4	0.965	7221	4505	83.09	5.1

MAD 5015 IPE 380KV FLUXER PRO 18x6.1 MATT XROTOR Pro 60A (4-65)

65 MAX 86°C


Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.86	2.11	49.8	36.5	0.142	2462	620	73.66	12.5
35	23.87	3.14	74.5	53.3	0.181	2816	806	71.58	10.8
40	23.86	4.3	102.0	75.2	0.228	3157	1022	73.62	10.0
45	23.84	5.77	137.1	104.7	0.283	3530	1272	76.35	9.3
50	23.83	7.78	185.1	145.1	0.354	3914	1570	78.35	8.5
55	23.8	9.9	235.2	187.9	0.419	4289	1853	79.85	7.9
60	23.79	11.94	283.5	233.9	0.484	4619	2139	82.46	7.5
65	23.78	14.66	348.1	287.7	0.558	4926	2486	82.60	7.1
70	23.75	17.39	412.6	341.6	0.625	5223	2795	82.76	6.8
75	23.7	19.84	469.6	403.1	0.699	5506	3106	85.78	6.6
80	23.71	24.36	576.9	470.8	0.776	5796	3481	81.56	6.0
85	23.64	28.35	669.7	547.4	0.859	6088	3874	81.70	5.8
90	23.61	31.72	748.3	632.4	0.949	6365	4273	84.46	5.7
95	23.52	37.67	885.7	724.3	1.044	6628	4674	81.73	5,3
100	23.49	44.45	1043.9	837.9	1.150	6960	5129	80.23	4.9

The above data are the theoretical values when the input voltage is 24 V, for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 15A is non-working zone.15-44A is short-term (about 10-30s), working zone, and below 63A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

MAD 5015 IPE 420KV
FLUXER PRO 18x6.1 MATT
XROTOR Pro 60A (4-65)
6S

Analytical Graph of Motor Operation
Encoded and the problem of the pr

Specifications						
RPM/V	420 KV	Nominal Voltage	65 lipo battery			
No Load Current	3A/20V	Internal resistance	25mΩ			
Motor Weight	230 g	Product Boxed Weight	393g (110 x 110 x 50 mm)			
Maximum Current	55.3 A	Maximum Power	1237W			
Maximum thrust	6.3 kg	Maximum Torque	1.3 Nm			
Recommended ESC	MAD AMPX 60A(4-65)	Recommended Propellers	18x6.1, 18.1x7.2			
UAV take-off weight	65-18"/ 9kgQuadcopter 13.5kgHexacopter 18kgOctocopter	Single rotor take-off weight	2kg - 3kg			

.....

MAX

94°C

CC	IVIA/
02	947

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power (W)	Torque (N×m)	RPM	Thrust (gf)	Efficiency [%]	Efficiency (gf/W)
30	23.75	3.06	72.8	44.2	0.162	2611	751	63.00	10.7
35	23.72	4.31	102.3	66.1	0.212	2979	994	66.92	10.1
40	23.68	5.63	133.3	90.2	0.259	3319	1205	69.80	9.3
45	23.64	7.47	176.5	126.7	0.327	3698	1550	73.97	9.1
50	23.58	9.71	228.9	168.7	0.393	4103	1874	75.71	8.4
55	23.52	12.41	292.0	217.7	0.465	4470	2229	76.28	7.8
60	23.44	15.23	356.9	269.5	0.536	4799	2516	76.99	7.2
65	23.36	18.37	429.1	327.9	0.614	5101	2927	77.65	6.9
70	23.27	21.6	502.6	384.9	0.681	5399	3220	77.52	6.5
75	23.17	25.19	583.7	448.7	0.757	5660	3627	77.47	6.3
80	23.06	29.34	676.6	522.8	0.841	5936	4049	77.70	6.0
85	22.95	33.71	773,7	597.7	0.917	6222	4450	80.37	6.0
90	22.82	38.28	873.8	675.1	0.994	6486	4808	80.15	5,7
95	22.7	43.34	983.6	757.5	1.072	6748	5246	79.45	5.5
100	22.51	49.81	1121.1	860.5	1.182	6951	5890	78.52	5.4

MAD 5015 IPE 420KV CF FLUXER 18.1x7.2 VTOL XROTOR Pro 60A (4-65)

65 MAX

Throttle [%]	Voltage [V]	Current [A]	Input Power [W]	Output Power [W]	Torque [N×m]	RPM	Thrust [gf]	Efficiency [%]	Efficiency [gf/W]
30	23.74	3.43	81.4	52.3	0.193	2586	858	66.94	11.0
35	23.71	4.7	111.4	74.2	0.242	2925	1087	69.01	10.1
40	23.67	6.23	147.5	103.3	0.304	3243	1378	72.37	9.7
45	23.62	8.31	196.3	144,1	0.380	3624	1726	75.47	9.0
50	23.55	11.05	260.2	195.0	0.464	4018	2112	76.83	8.3
55	23.47	14.01	328.9	249.2	0.543	4384	2488	77.41	7.7
60	23.38	17.3	404.4	308.6	0.627	4701	2852	77.60	7.2
65	23.3	20.71	482.5	368.9	0.705	4994	3199	77.47	6.7
70	23.19	24.55	569.5	435.1	0.788	5270	3576	77.06	6.3
75	23.08	28.75	663.6	508,5	0.881	5513	4035	76.90	6.1
80	22.97	32.78	753,1	576.0	0.951	5782	4355	79.31	6.0
85	22.82	38.18	871.3	666.3	1.058	6015	4930	79.34	5.9
90	22.68	43.97	997.1	762.9	1.168	6238	5460	78.86	5.6
95	22.54	49.05	1105.6	838.0	1.234	6484	5826	77.62	5.4
100	22.35	55.32	1236.7	929.5	1.326	6695	6285	76.35	5.2

The above data are the theoretical values when the input voltage is 24 V. for reference only. In the case of room temperature of 25°C and no additional cooling device, the current over 55A is non-working zone,21-55A is short-term (about 10-30s), working zone, and below 21A is sustainable working zone. In actual use, please control the motor running time according to the working environment temperature and heat dissipation conditions.

Our Services

1. We provide 1 Year Warranty. Buy with confidence.

2. If you are not satisfied when you receive your item, please return it within 14 days for a replacement or money back. Please contact me before you return it.

3. If item is defective in 3 months, We will send you a replacement without extra charger, or offer refund after we receive the defective item.

4. If item is defective after 3 months, you can still send it back to us. We will send you a new one after receiving the defective item. But you have to pay the extra shipping fee.

FAQ

Q1: Do you support OEM/ODM?

A1: Yes. We can print your logo on the product.

Q2: About samples.

A2: Under normal circumstances, samples will be ready within 7 days, and 10-20 days for OEM/ODM orders. Sample fee and shipping will be charged.

Q3: What is the delivery time?

A3: For regular orders, we can ship within 15 days, for OEM/ODM, we can ship within 25-45 days (depending on the quantity). In the event of delays, we will notify you in advance of the status and resolution.

Q4: What is the minimum order quantity?

A4: There is no MOQ for wholesale (1 piece accepted), including OEM/ODM.

Q5: What are your payment terms?

A5: L/C.TT100%. Q6: Can you reduce the shipping cost? A6: When calculating the shipping cost for you, we always choose the cheapest and safest express. Although we have partnerships with shipping companies, we can't keep costs down because it's not us who get paid. If you think it's expensive for you. You can always make your own choice. Q7: Return policy. A7: If you want to replace the received item, you must contact us within 7 days after receiving the item. Returned items should be in their original condition and you should pay for additional shipping.
Guangzhou Gesai Intelligent Electronic Technology Co., Ltd. State State Electronic Technology Co., Ltd. Electronic Technology Co., Ltd.

Fuli Yingtong Building, the Pearl River New Town, Tianhe District, Guangzhou, Guangdong, China